About this Document............................................2
What is NetBSD?................................................2
Changes Between The NetBSD 3.0 and 4.0 Releases................3
Networking..................................................3
File systems................................................4
Drivers.....................................................4
Platforms...................................................6
Kernel subsystems...........................................7
Security....................................................8
Userland....................................................8
Components removed from NetBSD.............................10
The Future of NetBSD..........................................11
Sources of NetBSD.............................................11
NetBSD 4.0 Release Contents...................................11
NetBSD/mvme68k subdirectory structure......................13
Binary distribution sets...................................13
NetBSD/mvme68k System Requirements and Supported Devices......16
Supported VME147 hardware..................................16
Supported VME162/VME172 hardware...........................16
Supported VME167/VME177 hardware...........................17
Getting the NetBSD System on to Useful Media..................17
Creating boot/install tapes................................18
Boot/Install from NFS server...............................18
Install/Upgrade from CD-ROM................................19
Install/Upgrade via FTP....................................19
Preparing your System for NetBSD installation.................19
Installing the NetBSD System..................................21
Installing from tape.......................................21
Installing from NFS........................................25
Booting the miniroot.......................................27
Miniroot install program:..................................28
Running the sysinst installation program...................29
Introduction............................................29
General.................................................29
Quick install...........................................29
Booting NetBSD..........................................30
Network configuration...................................31
Installation drive selection and parameters.............31
Partitioning the disk...................................31
Preparing your hard disk................................32
Getting the distribution sets...........................32
Installation using ftp..................................32
Installation using NFS..................................32
Installation from CD-ROM................................33
Installation from an unmounted file system..............33
Installation from a local directory.....................33
Extracting the distribution sets........................33
Finalizing your installation............................33
Post installation steps.......................................34
Upgrading a previously-installed NetBSD System................36
Upgrading using the miniroot...............................36
Manual upgrade.............................................37
Compatibility Issues With Previous NetBSD Releases............38
Issues affecting an upgrade from NetBSD 2.1 and older......38
Issues affecting an upgrade from NetBSD 3.x releases.......38
Issues with GDB 6.5...........................................39
Using online NetBSD documentation.............................39
Administrivia.................................................40
Thanks go to..................................................40
We are........................................................41
Dedication....................................................47
Legal Mumbo-Jumbo.............................................47
The End.......................................................53
This document describes the installation procedure for
NetBSD
4.0 on the
mvme68k
platform.
It is available in four different formats titled
INSTALL.
ext,
where
.ext
is one of
.ps
, .html
, .more
,
or .txt
:
.ps
.html
.more
more(1)
and
less(1)
pager utility programs.
This is the format in which the on-line
man
pages are generally presented.
.txt
You are reading the HTML version.
The NetBSD Operating System is a fully functional Open Source UNIX-like operating system derived from the University of California, Berkeley Networking Release 2 (Net/2), 4.4BSD-Lite, and 4.4BSD-Lite2 sources. NetBSD runs on fifty four different system architectures (ports), featuring seventeen machine architectures across fifteen distinct CPU families, and is being ported to more. The NetBSD 4.0 release contains complete binary releases for many different system architectures. (A few ports are not fully supported at this time and are thus not part of the binary distribution. Please see the NetBSD web site at http://www.NetBSD.org/ for information on them.)
NetBSD is a completely integrated system. In addition to its highly portable, high performance kernel, NetBSD features a complete set of user utilities, compilers for several languages, the X Window System, firewall software and numerous other tools, all accompanied by full source code.
NetBSD is a creation of the members of the Internet community. Without the unique cooperation and coordination the net makes possible, it's likely that NetBSD wouldn't exist.
The NetBSD 4.0 release provides numerous significant functional enhancements, including support for many new devices, integration of hundreds of bug fixes, new and updated kernel subsystems, and many user-land enhancements. The result of these improvements is a stable operating system fit for production use that rivals most commercially available systems.
It is impossible to completely summarize more than a year of development that went into the NetBSD 4.0 release. The complete list of changes can be found in the CHANGES: ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD-4.0/CHANGES and CHANGES-4.0: ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD-4.0/CHANGES-4.0 files in the top level directory of the NetBSD 4.0 release tree. Some highlights include:
agr(4)
:
new pseudo-device driver for link level aggregation.
gre(4)
tunnels and the
tun(4)
device.
ndiscvt(8)
.
options(4)
and
in_getifa(9)
.
wpa_supplicant(8)
and
wpa_cli(8)
.
Utilities to connect and handle aspects of 802.11 WPA networks.
hostapd(8)
.
An authenticator for IEEE 802.11 networks.
carp(4)
:
imported Common Address Redundancy Protocol to allow multiple hosts to share a set of IP addresses for high availability / redundancy, from OpenBSD.
etherip(4)
:
new EtherIP tunneling device. It's able to tunnel Ethernet traffic over IPv4 and IPv6 using the EtherIP protocol specified in RFC 3378.
ftpd(8)
can now run in standalone mode, instead of from
inetd(8)
.
tftp(1)
now has support for multicast TFTP operation in open-loop mode, server is in progress.
tcp(4)
:
added support for RFC 3465 Appropriate Byte Counting (ABC) and Explicit Congestion Notification as defined in RFC 3168.
scan_ffs(8)
,
scan_lfs(8)
:
utilities to find FFSv1/v2 and LFS partitions to recover lost disklabels on disks and image files.
mount_tmpfs(8)
.
mount_udf(8)
.
Read-only for now.
vnd(4)
:
the vnode disk driver can be used on filesystems such as smbfs and tmpfs.
newfs_sysvbfs(8)
and
mount_sysvbfs(8)
.
auich(4)
:
added support to handle the AC'97 modem as audio device, enabled with the kernel option
``AUICH_ATTACH_MODEM''
azalia(4)
:
added support for S/PDIF.
amdpm(4)
:
added support for the i2c bus on the AMD-8111 used on many Opteron motherboards and for the Analog Devices ADT7464 hardware monitor chip.
adt7467c(4)
:
new driver for Analog Devices ADT7467 and ADM1030 hardware monitor chips.
ipmi(4)
:
new driver for motherboards implementing the Intelligent Platform Management Interface 1.5 or 2.0, from OpenBSD.
it(4)
:
new driver for iTE 8705F/8712F and SiS 950 hardware monitors.
lm(4)
driver was rewritten and support for more chips was added, for example for Winbond W83627HF, W83627THF, W83627DHG and Asus AS99127F.
owtemp(4)
:
new driver for the 1-Wire temperature sensors.
tmp121temp(4)
:
new driver for the Texas Instruments TMP121 temperature sensor.
ug(4)
:
new driver for Abit uGuru hardware monitor found on newer Abit motherboards.
geodewdog(4)
:
new AMD Geode SC1100 Watchdog Timer driver.
gscpcib(4)
:
new AMD Geode SC1100 PCI-ISA bridge that provides support for the GPIO interface.
ath(4)
:
updated HALs with support for WiSOC (AR531x) and 32bit SPARC.
bge(4)
:
added support for the following chips: BCM5753, BCM5753M, BCM5715, BCM5754, BCM5755 and BCM5787. Numerous improvements and bugfixes were made too.
kse(4)
:
new driver for Micrel KSZ8842/8841 PCI network cards.
msk(4)
:
new driver for Marvell Yukon 2 GigE PCI network cards, from OpenBSD.
nfe(4)
:
new driver for NVIDIA nForce Ethernet network cards, from OpenBSD.
ral(4)
:
new 802.11 driver for PCI/Cardbus Ralink RT2500, RT2501, RT2600, RT2661 and RT2500 USB chipsets, from OpenBSD.
rum(4)
:
new 802.11 driver for USB Ralink RT2501 and RT2601 chipsets, from OpenBSD.
sip(4)
:
now works on sparc64.
tlp(4)
:
added support for ASIX AX88140A and AX88141.
vr(4)
:
added support for the VIA Rhine III.
wm(4)
:
added support for i8003, ICH8, ICH9 and others. Support for IPv6 Rx TCP/UDP Checksum Offloading and more.
wpi(4)
:
new driver for Intel PRO/Wireless 3945ABG PCI 802.11 network cards, from OpenBSD.
glxsb(4)
:
new driver for the AMD Geode LX AES Security Block that provides random numbers and AES acceleration, from OpenBSD.
options(4)
for more information.
options(4)
for more information.
ahcisata(4)
:
new driver for AHCI 1.0 and 1.1 compliant SATA controllers.
ataraid(4)
:
added support to handle Adaptec HostRAID and VIA V-Tech software RAID.
ciss(4)
:
new driver for HP/Compaq 5th+ generation Smart ARRAY controllers, from OpenBSD.
fdc(4)
:
added support for SBus based sparc64 machines and fixed formatting on sparc.
gcscide(4)
:
new driver for the AMD Geode CS5535 Companion Device IDE controller.
jmide(4)
:
new driver for JMicron Technology JMB36x PCIe to SATA II/PATA controllers.
mfi(4)
:
new driver for LSI Logic and Dell MegaRAID SAS controllers, from OpenBSD.
mpt(4)
:
added support for newer SAS and similar devices.
njata(4)
:
new driver for Workbit NinjaATA-32 CardBus IDE controller.
pdcsata(4)
:
added support for the Promise PDC20775, PDC20771, PDC40518, PDC40718 and some bugfixes.
piixide(4)
:
added support for some ICH8/ICH8-M/ICH9 IDE and SATA controllers.
svwsata(4)
:
new driver for Serverworks K2 SATA controllers, from OpenBSD.
viaide(4)
added support for the VIA VT8237A SATA controller and AMD CS5536 Companion Device IDE Controller.
ucycom(4)
:
new driver for Cypress microcontroller based serial devices.
uipaq(4)
:
new driver for the iPAQ devices.
uslsa(4)
:
new driver for Silicon Labs CP210x series serial adapters.
utoppy(4)
:
new driver for the Topfield TF5000PVR range of digital video recorders.
vesafb(4)
:
added new framebuffer driver that supports VESA BIOS (VBE) 2.0 extensions and up.
teliosio(4)
driver for the Sharp Telios LCD screen and Battery unit.
midi(4)
framework got a complete overhaul for better support of Active Sensing and improved handling of tempo and timebase changes.
ubt(4)
for USB controllers, and
bt3c(4)
for the 3Com Bluetooth PC-Card.
See
bluetooth(4)
,
bthset(1)
and
btpin(1)
.
bio(4)
framework from OpenBSD, to query/control block hardware RAID device controllers. Currently supporting the
mfi(4)
driver.
dkctl(8)
can be used to switch buffer queuing strategies on the fly on
wd(4)
disks, see also
bufq(9)
.
fileassoc(9)
is used by Veriexec, it adds in-kernel and file-system independent file meta-data association interface.
firmload(9)
:
an API for loading firmware images used by various hardware devices.
gpio(4)
:
imported General Purpose I/O framework from OpenBSD.
onewire(4)
:
imported Dallas Semiconductor 1-wire bus framework from OpenBSD.
proplib(3)
protocol was added for sending property lists to/from the kernel using ioctls.
spi(4)
:
new SPI (Serial Peripherial Interface) framework.
timecounter(9)
adds a new time-keeping infrastructure along with NTP API 4 nanokernel implementation. Almost all platforms were changed to support this API.
wscons(4)
console driver supports splash screens, scrolling, progress bar for kernel and boot messages.
Kernel interfaces have continued to be refined, and more subsystems and device drivers are shared among the different ports. You can look for this trend to continue.
fast_ipsec(4)
for more information.
mprotect(2)
got restrictions to enforce W^X policies, from PaX. See
options(4)
,
sysctl(3)
,
and
paxctl(1)
.
security(8)
.
kauth(9)
was added, replacing the traditional BSD credential management and privileged operation access control with an abstract layer, allowing the implementation of various security models either as part of the NetBSD distribution or as third-party LKMs.
NetBSD's kernel authorization is a hybrid clean-room implementation of a similar interface developed by Apple, extending its capabilities and combining concepts of credential inheritance control.
cdplay(1)
:
added digital transfer mode support.
cksum(1)
can now verify checksums.
csplit(1)
:
new utility that splits a file into pieces. From FreeBSD/OpenBSD.
identd(1)
:
added support for forwarding ident queries and receiving of proxied ident queries.
getent(1)
:
added support for the ethers database.
gkermit(1)
:
new program for transferring files using the Kermit protocol.
mail(1)
:
added support for Mime and multi-character set handling, command line editing and completion.
utoppya(1)
:
new utility to interface to the
utoppy(4)
driver.
init(8)
:
added support for running multi-user in a chroot() environment. Allows / file system on e.g.,
cgd(4)
,
vnd(4)
or
ccd(4)
volumes.
gpt(8)
:
new GUID partition table maintenance utility, from FreeBSD.
iscsi-target(8)
;
Initiator (client) code is underway.
lockstat(8)
:
new command to display a summary of kernel locking events recorded over the lifetime of a called program.
ofctl(8)
:
new command to display the OpenPROM or OpenFirmware device tree for the macppc, shark and sparc64.
btconfig(8)
for controller configuration.
btdevctl(8)
to manage pseudo devices relating to remote services.
bthcid(8)
and
btpin(1)
for authenticating radio connections.
sdpd(8)
for providing service discovery to remote devices.
sdpquery(1)
for querying services on remote devices.
rfcomm_sppd(1)
to access remote services over RFCOMM via stdio or pty.
bthset(1)
for making connections to Bluetooth headsets.
Besides this list, there have also been innumerable bug fixes and other miscellaneous enhancements of course.
In this release of NetBSD, some software components known from previous releases were removed from the system. In some cases those were components that are not useful anymore or their utility does not justify maintenance overhead. Other components were not working properly and there was lack of interest in fixing them.
raid(4)
,
raidctl(8)
,
and the
NetBSD Guide:
http://www.NetBSD.org/docs/guide/en/chap-rf.html.
sendmail(1)
command line tool. Postfix has been included with NetBSD since NetBSD 1.5 was released in December 2005. Details about Postfix can be found in the
NetBSD Guide:
http://www.NetBSD.org/docs/guide/en/chap-mail.html.
For those who need Sendmail, it is available from pkgsrc in the
mail/sendmail
and
mail/sendmail813
packages.
net/uucp
package. The
cu(1)
command is available as a frontend to
tip(1)
.
lang/gcc3-f77
package.
The NetBSD Foundation has been incorporated as a non-profit organization. Its purpose is to encourage, foster and promote the free exchange of computer software, namely the NetBSD Operating System. The foundation will allow for many things to be handled more smoothly than could be done with our previous informal organization. In particular, it provides the framework to deal with other parties that wish to become involved in the NetBSD Project.
The NetBSD Foundation will help improve the quality of NetBSD by:
We hope to support even more hardware in the future, and we have a rather large number of other ideas about what can be done to improve NetBSD.
We intend to continue our current practice of making the NetBSD-current development source available on a daily basis.
We intend to integrate free, positive changes from whatever sources submit them, providing that they are well thought-out and increase the usability of the system.
Above all, we hope to create a stable and accessible system, and to be
responsive to the needs and desires of
NetBSD
users, because it is for
and because of them that
NetBSD
exists.
Refer to
http://www.NetBSD.org/mirrors/.
The root directory of the NetBSD 4.0 release is organized as follows:
.../NetBSD-4.0/
CHANGES
CHANGES-4.0
CHANGES.prev
LAST_MINUTE
MIRRORS
README.files
TODO
patches/
source/
In addition to the files and directories listed above, there is one directory per architecture, for each of the architectures for which NetBSD 4.0 has a binary distribution.
The source distribution sets can be found in subdirectories of the
source
subdirectory of the distribution tree.
They contain the complete sources to the system.
The source distribution sets are as follows:
config(1)
;
and
dbsym(8)
.
All the above source sets are located in the
source/sets
subdirectory of the distribution tree.
The source sets are distributed as compressed tar files.
Except for the
pkgsrc
set, which is traditionally unpacked into
/usr/pkgsrc
,
all sets may be unpacked into
/usr/src
with the command:
#
cd / ; tar -zxpf set_name.tgz
In each of the source distribution set directories, there are files which contain the checksums of the files in the directory:
BSDSUM
CKSUM
MD5
SHA512
SYSVSUM
The SHA512 digest is the safest checksum, followed by the MD5 digest, and finally the POSIX checksum. The other two checksums are provided only to ensure that the widest possible range of systems can check the integrity of the release files.
mvme68k
subdirectory of the distribution:
.../NetBSD-4.0/mvme68k/
.
It contains the following files and directories:
INSTALL.html
INSTALL.ps
INSTALL.txt
INSTALL.more
.more
file contains underlined text using the
more(1)
conventions for indicating italic and bold display.
binary/
kernel/
netbsd-GENERIC.gz
netbsd-VME147.gz
netbsd-VME162.gz
netbsd-VME167.gz
netbsd-VME172.gz
netbsd-VME177.gz
sets/
installation/
miniroot/
netboot/
tapeimage/
mvme68k/binary/sets
subdirectory
of the
NetBSD
4.0
distribution tree, and are as follows:
/usr/include
)
and the various system libraries (except the shared
libraries, which are included as part of the
base
set).
This set also includes the manual pages for
all of the utilities it contains, as well as the
system call and library manual pages.
/etc
and in several other places.
This set
must
be installed if you are installing the system from scratch, but should
not
be used if you are upgrading.
GENERIC
kernel, named
/netbsd
.
You
must
install this distribution set.
/usr/share
.
groff(1)
,
all related programs, and their manual pages.
NetBSD maintains its own set of sources for the X Window System in order to assure tight integration and compatibility. These sources are based on XFree86, and tightly track XFree86 releases. They are currently equivalent to XFree86 4.5.0. Binary sets for the X Window System are distributed with NetBSD. The sets are:
The mvme68k binary distribution sets are distributed as gzipped tar files
named with the extension
.tgz,
e.g.
base.tgz
.
The instructions given for extracting the source sets work equally
well for the binary sets, but it is worth noting that if you use that
method, the filenames stored in the sets are relative and therefore
the files are extracted
below the current directory.
Therefore, if you want to extract the binaries into your system, i.e.
replace the system binaries with them, you have to run the
tar -xpf
command from the root directory (
/
) of your system.
This utility is used only in a Traditional method installation.
The following are included in the
mvme68k/installation
directory:
miniroot/
miniroot.gz
netboot/
sboot
netboot
tapeimage/
stboot
bootst
netbsd-RAMDISK.gz
GENERIC
kernel and a built in RAMDISK
with just enough tools to partition a disk, dump the miniroot kernel
to it and make the disk bootable.
This must be the third file written to the tape.
NetBSD/mvme68k 4.0 runs on Motorola MVME147 , MVME162 , MVME167 , MVME172 , and MVME177 Single Board Computers.
The minimal configuration requires 8 MB of RAM and ~200 MB of disk space. To install the entire system requires much more disk space (approx. 600 MB additional space is necessary for full sources. Double that if you want to recompile it all!). To run X (clients only) or compile the system, more RAM is recommended. Good performance requires 16 MB of RAM, or 32 MB when running the X Window System.
Note that you can install NetBSD 4.0 on a system with only 4 MB of onboard RAM, but you will need to use a VMEbus RAM card with at least another 4 MB to augment the onboard memory in order to actually install the system.
Here is a table of recommended HD partition sizes for a full install:
Partition | Suggested | Needed |
/ (root) | 32 MB | 26 MB |
/usr | 200 MB | 150 MB |
/var | 32 MB | 6 MB |
swap | 2-3 *RAM 16 MB
| |
Note that the NetBSD/mvme68k installation procedure uses a miniroot image which is placed into the swap area of the disk. The swap partition must be large enough to hold this miniroot image (> 7.5 MB).
If it's not on the above lists, there is no support for it in this release.
Installation is supported from several media types, including:
Note that installing on a `bare' machine requires either a bootable tape drive or an ethernet to a compatible NFS server. MVME147 may also need to be booted over an RS232 connection.
The procedure for transferring the distribution sets onto installation media depends on the type of media. Instructions for each type of media are given below.
In order to create installation media, you will need all the files and subdirectories in these two directories:
.../NetBSD-4.0/mvme68k/installation
.../NetBSD-4.0/mvme68k/binary
The boot tape is created as follows:
#
cd .../NetBSD-4.0/mvme68k/installation
#
set T = /dev/nrst0
#
mt -f $T rewind
#
dd if=tapeimage/stboot of=$T obs=8k conv=osync
#
dd if=tapeimage/bootst of=$T obs=8k conv=osync
#
gzip -dc tapeimage/netbsd-RAMDISK.gz | dd of=$T obs=8k conv=osync
#
gzip -dc miniroot/miniroot.fs.gz | dd of=$T obs=8k conv=osync
#
mt -f $T rewind
The installation set tape is created as follows:
#
cd .../NetBSD-4.0/mvme68k/binary/sets
#
set T = /dev/nrst0
#
mt -f $T rewind
#
for f in base etc comp games man misc text; do
gzip -d < $f.tgz | dd of=$T bs=8k conv=osync
#
done
#
mt -f $T rewind
If the tape does not work as expected, you may need to explicitly set the EOF mark at the end of each tape segment. Consult the tape-related manual pages on the system where the tapes are created for more details.
If you are using a
NetBSD
system as the boot-server, have a look at
the
diskless(8)
manual page for guidelines on how to proceed with this.
If the server runs another operating system, consult the
documentation that came with it (i.e.
add_client(8)
on
SunOS).
Booting an MVME147 from ethernet is not possible without first downloading a small bootstrap program (sboot) via RS232. See the section entitled Installing from NFS for details on how to accomplish this.
sboot expects to be able to download a second stage bootstrap
program via TFTP after having acquired its IP address through RARP
It will look for a filename derived from the machine's IP address
expressed in hexadecimal, with an extension of
`.147
'.
For example, an MVME147 with IP address 130.115.144.11 will make an TFTP
request for
8273900B.147
.
Normally, this file is just a symbolic link to the
NetBSD/mvme68k
netboot
program, which should be located in a place
where the TFTP daemon can find it (remember, many TFTP daemons run in
a chroot'ed environment).
The netboot program may be found in the install directory of this distribution.
The
MVME162
,
MVME167
,
MVME172
,
and
MVME177
boot ROMs have code builtin to boot over ethernet from a TFTP server.
You should configure it to download the same
netboot
program as is used for
MVME147.
The netboot program will query a bootparamd server to find the NFS
server address and path name for its root, and then load a kernel from
that location.
The server should have a copy of the netbsd-RAMDISK kernel in
the root area for your client (no other files are needed in the client
root, although it might be a convenient place to put the uncompressed
miniroot image) and
/etc/bootparams
on the server should have an entry for your client and its root directory.
Note that you should rename the
netbsd-RAMDISK
kernel to just
netbsd
in the client's root directory before trying to netboot the client.
The client will need access to the miniroot image, which can be provided using NFS or remote shell. If using NFS, miniroot.fs.gz should be expanded on the server, because doing so from the RAMDISK shell is not so easy. The unzipped miniroot takes about 7.5 MB of space.
If you will be installing NetBSD on several clients, it may be useful to know that you can use a single NFS root for all the clients as long as they only use the netbsd-RAMDISK kernel. There will be no conflict between clients because the RAM-disk kernel will not use the NFS root. No swap file is needed; the RAM-disk kernel does not use that either.
This method, of course, requires network access to an FTP server. This might be a local system, or it might even be ftp.NetBSD.org itself. If you wish to use ftp.NetBSD.org as your FTP file server, you may want to keep the following information handy:
No IP Address: ftp.NetBSD.org
Login: anonymous
Password: <your e-mail address>
Server path: /pub/NetBSD/NetBSD-4.0/mvme68k/binary
mvme68k machines usually need little or no preparation before installing NetBSD, other than the usual, well advised precaution of backing up all data on any attached storage devices.
The exception to the above is that MVME162 , MVME167 , MVME172 and MVME177 boards require a jumper to be removed or DIP switch changed before NetBSD can be installed. On MVME162-LX and MVME172-LX pins 1-2 of jumper J11 must be removed. On MVME162-P2/P4 and MVME172-P2/P4 switch S4, position 8 must be set to OFF. On MVME167 and MVME177 pins 1-2 of jumper J1 must be removed.
Once you've made any necessary jumper changes, the following instructions should make your machine ``NetBSD Ready''.
Power-up your MVME147 board. You should have the bug prompt:
COLD Start
Onboard RAM start = $00000000, stop = $007FFFFF
147-Bug>
Or, if you have an MVME162/172 or MVME167/177 board (the following boot message is from MVME167; the others are similar):
MVME167 Debugger/Diagnostics Release Version 2.3 - 02/25/94
COLD Start
Local Memory Found =02000000 (&33554432)
MPU Clock Speed =33Mhz
167-Bug>
Make sure the RAM size looks ok (if you've got an 8 MB MVME147 or a 32 MB MVME167 you should have the same value as we do). Also make sure the clock is ticking:
1xx-Bug>
time
Sunday
12/21/31
16:25:14
1xx-Bug>
time
Sunday
12/21/31
16:25:15
1xx-Bug>
Note that
NetBSD
bases its year at 1968, and adds the year offset in
the system's real-time clock to get the current year.
So the
31
here
equates to 1999.
You may have to adjust your clock using the
set
command to comply with
NetBSD 's
requirements.
Don't worry if the
`Day of the week'
is not correct, as
NetBSD
doesn't use it.
Motorola has acknowledged a year 2000 bug in some versions of the MVME147
whereby the day of the week
doesn't get set correctly by the 147Bug PROM.
does not affect
NetBSD !
Also make sure that your board's ethernet address is initialised to the correct value. You'll find the address on a label on the inside of the MVME147's front panel, and on the VMEbus P2 connector of the other board types. On the MVME147, enter the last five digits of the address using the lsad command. On the MVME162/172 and MVME167/177, you should use the cnfg command.
The NetBSD kernel reads the first two long words of the onboard NVRAM to determine the starting and ending address of any VMEbus RAM that should be used by the system. You should verify that this area is set properly for your configuration.
If you have no VMEbus RAM boards, the values should be set to zero (0).
For an MVME162, MVME167, MVME172 or MVME177 board, at the 1xx-Bug> prompt:
1xx-Bug>
mm fffc0000 ;l
fffc0000:
xxxxxxxx?
0
fffc0004:
xxxxxxxx?
0
fffc0008:
xxxxxxxx?
.
1xx-Bug>
For an MVME147 board, at the 147Bug prompt:
147Bug>
mm fffe0764 ;l
fffe0764:
xxxxxxxx?
0
fffe0768:
xxxxxxxx?
0
fffe076c:
xxxxxxxx?
.
If you do have VMEbus RAM available and want NetBSD to use it, the first long word should be set to the starting address of this RAM and the second long word should be set to the ending address.
If you have more than one VMEbus RAM board installed, the starting and ending addresses must be contiguous from one board to the next. Also note that, for various reasons beyond the scope of this document, VMEbus RAM should be configured in A32 address space.
To install successfully to a local SCSI disk, you need to ensure that the system is aware of what targets are connected to the SCSI bus. This can be done by issuing the following command:
1xx-Bug>
iot;t
At this point, Bug will scan for any attached SCSI devices. After a short delay, a list of SCSI devices will be displayed. 147Bug will ask if LUNs should be assigned from SCSI ids, to which you should answer Y. You should also answer Y when asked if the information is to be saved to NVRAM. 16xBug does not prompt for this information.
The following installation instructions will assume that your target
SCSI disk drive appears at SCSI-ID 0.
If you have a tape drive, the instructions assume is is configured
for SCSI-ID 5.
When the RAMDISK root boots,
NetBSD
will refer to these devices as
sd0
and
rst0
respectively.
You may wish to note these down; you'll be using them a lot. :-)
Installing NetBSD is a relatively complex process, but if you have this document in hand it should not be too difficult.
There are several ways to install NetBSD onto your disk. If your MVME147 machine has a tape drive the easiest way is Installing from tape (details below). All other machines can be installed easily over the network from a suitable NFS server. See Installing from NFS for details. Otherwise, if you have another mvme68k machine running NetBSD you can initialize the disk on that machine and then move the disk.
147-Bug>
bo 5
16x-Bug>
bo 0,50
As mentioned earlier, this assumes your tape is jumpered for SCSI-ID 5.
As the tape loads (which may take 20 to 30 seconds), you will see a series of status messages. It may be useful if you can capture these messages to a file, or a scrollable xterm window. In particular, you should make a note of the lines which describe the geometry of the SCSI disks detected by NetBSD. They are of the form:
sd0 at scsibus0 targ 0 lun 0: <Maker, Disk, Foo> SCSI1 0/direct fixed
sd0: 800 MB, 800 cyl, 16 head, 128 sec, 512 bytes/sect x 1638400 sectors
The information of most interest is the number of sectors; for the fictitious disk above, it's 1638400. You will need this number when you come to create a disklabel for that drive.
Here is an example of an MVME147 system booting from tape:
RAM address from VMEbus = $00000000
Booting from: VME147, Controller 5, Device 0
Loading: Operating System
Volume: NBSD
IPL loaded at: $003F0000
>> BSD MVME147 tapeboot [$Revision: 1.18 $]
578616+422344+55540+[46032+51284]=0x11a6e4
Start @ 0x8000 ...
Copyright (c) 1996, 1997, 1998, 1999, 2000
The NetBSD Foundation, Inc. All rights reserved.
Copyright (c) 1982, 1986, 1989, 1991, 1993
The Regents of the University of California. All rights reserved.
NetBSD 1.5 (RAMDISK) #1: Sun Oct 29 16:19:04 GMT 2000
steve@fatbob:/usr/src/sys/arch/mvme68k/compile/RAMDISK
Motorola MVME-147S: 25MHz MC68030 CPU+MMU, MC68882 FPU
real mem = 7237632
avail mem = 6381568
using 88 buffers containing 360448 bytes of memory
mainbus0 (root)
pcc0 at mainbus0: Peripheral Channel Controller, rev 0, vecbase 0x40
clock0 at pcc0 offset 0x0 ipl 5: Mostek MK48T02, 2048 bytes of NVRAM
.
.
Finally, you will see the following "welcome" message:
Welcome to the NetBSD/mvme68k RAMDISK root!
This environment is designed to do only four things:
1: Partition your disk (use the command: edlabel /dev/rsd0c)
2: Copy a miniroot image into the swap partition (/dev/rsd0b)
3: Make that partition bootable (using 'installboot')
4: Reboot (using the swap partition, i.e. /dev/sd0b).
Copying the miniroot can be done several ways, allowing the source
of the miniroot image to be on any of these:
boot tape, NFS server, TFTP server, rsh server
The easiest is loading from tape, which is done as follows:
mt -f /dev/nrst0 rewind
mt -f /dev/nrst0 fsf 3
dd if=/dev/nrst0 of=/dev/rsd0b bs=8k conv=sync
(For help with other methods, please see the install notes.)
To reboot using the swap partition after running installboot, first
use
halt,
then at the Bug monitor prompt use a command like:
1x7Bug> bo 0,,b:
To view this message again, type: cat /.welcome
#
You must now create a disklabel on the disk you wish to use for the
root file system
(/
).
This will usually be
sd0
.
The disklabel is used by
NetBSD to identify the starting block and size of each partition on
the disk.
Partitions are named
sd0a
,
sd0b
,
sd0c
,
etc,
up to
sd0h
.
The mvme68k port of
NetBSD
makes some assumptions about the first three partitions on a boot disk:
sd0a
/
).
sd0b
sd0c
The raw partition is special; NetBSD is able to use it even if the disk has no label. You should never create a file system on the Raw Partition, even on a non-boot disk.
It is good practice to put
/usr
on a different partition than
/
(root, AKA
sd0a
).
So, the first available partition for
/usr
is
sd0d
.
Refer to the section entitled
NetBSD System Requirements and Supported Devices
for information on the recommended sizes of the
/
(root),
/usr
and swap partitions.
You are not required to define any partitions beyond
sd0d
,
but if you
have a large disk drive, you might want to create several other partitions
for file systems such as
/home
or
/usr/src
.
Note that at this time you
are only required to partition the root/boot disk; you will get the
opportunity to partition any other disks in your system from the main
miniroot
installation program.
To create the disklabel and partitions, use the
edlabel
program, passing it the name of the Raw Partition of your root/boot disk.
#
edlabel /dev/rsd0c
edlabel
menu:
print
-
display
the
current
disk
label
modify
-
prompt
for
changes
to
the
label
write
-
write
the
new
label
to
disk
quit
-
terminate
program
edlabel>
The program shows what commands it recognizes; print, modify, write, and quit. It will accept the first letter of a command if you don't feel like typing each one in full.
To start creating the basic partitions, you should enter m (modify) at the edlabel prompt, then enter the letter corresponding to the first partition, a.
edlabel>
m
modify
subcommands:
@
: modify
disk
parameters
a-h
: modify
partition
s
: standardize
geometry
q
: quit
this
subcommand
edlabel/modify>
a
a
(root)
0
(0/00/00)
0
(0/00/00)
unused
start
as
<blkno>
or
<cyls/trks/sects>
: 0
length
as
<nblks>
or
<cyls/trks/sects>
: 65536
type:
4.2BSD
edlabel/modify>
When you enter the start and length of a partition, you can use either
blocks or cylinder/track/sector notation.
If this is the first time you've partitioned a disk for
NetBSD,
it's probably easiest to use block
notation.
The above example creates partition
`a
',
starting at block zero
and with a size of 65536 blocks.
Note that the usual size of a block is
512 bytes, so this creates a 32 MB partition.
The
type
of the partition should be
4.2BSD
,
otherwise you won't be able to create a file system on it.
Next, create a swap partition (b). Note that the minimum size of this swap partition should be 8 MB, otherwise you won't be able to use a miniroot to complete the NetBSD installation!
edlabel/modify>
b
b
(swap)
0
(0/00/00)
0
(0/00/00)
unused
start
as
<blkno>
or
<cyls/trks/sects>
: 65536
length
as
<nblks>
or
<cyls/trks/sects>
: 32768
type:
swap
edlabel/modify>
Here, we specify a value for
start
such that the swap partition follows immediately after partition
`a
',
i.e. 65536.
The length of the swap partition should be a multiple of the
amount of RAM you have in your system.
Here, we've chosen 32768, or 16 MB.
The next available block on the drive is thus 65536 + 32768.
We will use this to create partition
`d
'
for our
/usr
file system.
(Note that for a busy system, or a system with more
than 8 MB of RAM, you'll be better off with a 32 or 64 MB swap partition.)
edlabel/modify>
d
d
(user)
0
(0/00/00)
0
(0/00/00)
unused
start
as
<blkno>
or
<cyls/trks/sects>
: 98304
length
as
<nblks>
or
<cyls/trks/sects>
: 1540096
type:
4.2BSD
edlabel/modify>
q
edlabel>
As you can see, we've chosen to assign the remainder of the disk to
/usr
.
Since there are 1638400 sectors on the example disk (did you remember to
note down the number of sectors on your disk during boot?), and partition
d
starts at sector 98304, a simple bit of arithmetic (1638400 - 98304)
gives
d a size of 1540096.
Note that the above partition sizes are just guidelines. If your disk is large enough, you should resize the partitions appropriately and perhaps also create a /var partition as well.
You now need to write this new disklabel, together with the partition details you've just entered, to disk. You might also try the `p' command to view the partitions. Once written, you can quit back to the shell using `q'.
edlabel>
p
type_num: 4
sub_type: 0
type_name: SCSI disk
pack_name: fictitious
bytes/sector: 512
sectors/track: 128
tracks/cylinder: 16
cylinders: 800
sectors/cylinder: 2048
partition start (c/t/s) nblks (c/t/s) type
a (root) 0 (0/00/00) 65536 (32/00/00) 4.2BSD
b (swap) 65536 (32/00/00) 32768 (48/00/00) swap
c (disk) 0 (0/00/00) 1638400 (800/00/00) unused
d (user) 98304 (48/00/00) 1540096 (752/00/00) 4.2BSD
edlabel>
w
edlabel>
q
#
Now that your disk's partitioned, you need to get the proper installation miniroot image onto it. The miniroot image is designed to be copied into the swap partition of your disk. This is a safe place which won't be overwritten by the installation procedure. From the shell prompt, use the following commands to copy the miniroot image from tape to swap (b).
#
mt -f /dev/nrst0 rewind
#
mt -f /dev/nrst0 fsf 3
#
dd if=/dev/nrst0 of=/dev/rsd0b bs=8k conv=osync
The disk and the miniroot must now be made bootable using the
installboot(8)
command.
To do this, issue the following commands:
#
mount /dev/sd0b /mnt
#
installboot /mnt/usr/mdec/bootsd /bootxx /dev/rsd0b
#
umount /dev/sd0b
You can now shutdown the system.
#
halt
signal
15
syncing
disks...
done
unmounting
/
(root_device)...
halted
147-Bug>
reset
Reset
Local
SCSI
Bus
[Y,N]
N?
y
Automatic
reset
of
known
SCSI
Buses
on
RESET
[Y,N]
Y?
Cold/Warm
Reset
flag
[C,W]
=
C?
Execute
Soft
Reset
[Y,N]
N?
y
Resetting the other types of MVME boards are very similar. You should now reboot from that just installed miniroot. See the section entitled Booting the miniroot for details.
To get started on the MVME147, you need to download
sboot
into RAM (you will find
sboot
in the
install
directory of the mvme68k distribution).
You can either do that through the console line or through a 2nd serial
connection.
For example, an MVME147 connected to a sun4/110 and accessed via
tip(1)
can be loaded as follows:
lo 0
~Ccat sboot
go 4000
Which will look like this:
147-Bug>
lo 0
~CLocal
command?
cat sboot
away for 11 seconds
!
147-Bug>
g 4000
Effective
address:
00004000
sboot:
serial
line
bootstrap
program
(end
=
6018)
>>>
Now, if you want to do it through serial line 1, then connect serial
line one to a machine.
At the
147-Bug>
prompt type tm 1
You should then login to the machine it is connected to.
Then press
CONTROL-A
to escape to Bug.
Do
lo 1;x=cat sboot ...
then when that is done you can reconnect
tm 1 and logout.
Then do go 4000
and you've got the
>>>
prompt of
sboot.
Once you've got the
>>>
prompt, you can boot the
RAMDISK
kernel from the server:
>>>
b
le0: ethernet address: 8:0:3e:20:cb:87
My ip address is: 192.168.1.4
Server ip address is: 192.168.1.1
4800
Download was a success!
See below for the next step in booting MVME147.
The MVME162, MVME167, MVME172 and MVME177 boards are able to download netboot directly using TFTP. To enable this, you must first configure the networking parameters on the board as described in the section entitled "Preparing your System for NetBSD Installation. On a properly configured MVME162/172 or MVME167/177, all you need to type is:
1xx-Bug>
nbo
For all board types, the boot messages are very similar:
Start @ 0x8000 ...
>> BSD MVME147 netboot (via sboot) [$Revision: 1.18 $]
device: le0 attached to 08:00:3e:20:cb:87
boot: client IP address: 192.168.1.4
boot: client name: soapy
root addr=192.168.1.1 path=/export/soapy
578616+422344+55540+[46032+51284]=0x11a6e4
Start @ 0x8000 ...
Copyright (c) 1996, 1997, 1998, 1999, 2000
The NetBSD Foundation, Inc. All rights reserved.
Copyright (c) 1982, 1986, 1989, 1991, 1993
The Regents of the University of California. All rights reserved.
NetBSD 1.5 (RAMDISK) #1: Sun Oct 29 16:19:04 GMT 2000
steve@fatbob:/usr/src/sys/arch/mvme68k/compile/RAMDISK
Motorola MVME-147S: 25MHz MC68030 CPU+MMU, MC68882 FPU
real mem = 7237632
avail mem = 6381568
using 88 buffers containing 360448 bytes of memory
mainbus0 (root)
pcc0 at mainbus0: Peripheral Channel Controller, rev 0, vecbase 0x40
clock0 at pcc0 offset 0x0 ipl 5: Mostek MK48T02, 2048 bytes of NVRAM
.
.
After the boot program loads the
RAMDISK
kernel, you should see the
welcome screen as shown in the "tape boot" section above.
You now need to create a disklabel with partition information on the
SCSI disk on which you intend to create your root file system
(/
).
Follow the instructions in the previous section entitled
Installing from tape
to do this.
(But stop short of the part which describes how to
copy the miniroot from tape.)
You must now configure the network interface before you can access the NFS server containing the miniroot image. For example the command:
#
ifconfig le0 inet 192.168.1.4 up
will bring up the MVME147 network interface
le0
with that address.
The command:
#
ifconfig ie0 inet 192.168.1.4 up
will bring up the MVME162/172 or MVME167/177 network interface
ie0
with that address.
The next
step is to copy the miniroot from your server.
This can be done using either NFS or remote shell.
(In the examples that follow, the server has
IP address 192.168.1.1) You may then need to add a default route if the
server is on a different subnet:
#
route add default 192.168.1.2 1
You can look at the route table using:
#
route show
Now mount the NFS file system containing the miniroot image:
#
mount -r 192.168.1.1:/export/soapy /mnt
The procedure is simpler if you have space for an expanded (not compressed) copy of the miniroot image. In that case:
#
dd if=/mnt/miniroot of=/dev/rsd0b bs=8k
Otherwise, you will need to use gzcat to expand the miniroot image while copying.
#
gzcat miniroot.fs.gz | dd of=/dev/rsd0b obs=8k conv=osync
You must now make the disk bootable. Refer to the previous section on installing from tape, where it describes how to run installboot. This is immediately following the part which explains how to copy the miniroot from tape.
b
'
of the disk with
SCSI-ID 0, then the boot command is:
1xx-Bug>
bo 0,,b:
The command line parameters above are:
b
You should see a bunch of boot messages, followed by messages from
the miniroot kernel just as you did when the
RAMDISK
kernel booted.
You will then be prompted to enter the root device.
Since the miniroot was booted from the swap partition, you should enter
sd0b
.
You will
then be asked for the swap device and file system type.
Just press
RETURN
twice to accept the defaults.
When asked to enter a terminal type, either accept the default,
or use whatever the TERM environment
variable is set to in the shell of your host system:
boot
device:
sd0
root
device
(default
sd0a):
sd0b
dump
device
(default
sd0b):
(return)
file
system
(default
generic):
(return)
root
on
sd0b
dumps
on
sd0b
mountroot:
trying
ffs...
root
file
system
type:
ffs
init:
copying
out
path
`/sbin/init'
11
erase
^H,
werase
^W,
kill
^U,
intr
^C
Terminal
type?
[vt100]
return
Congratulations! The system should now be running the miniroot installation program.
Starting with NetBSD version 1.6, you have the option of using sysinst instead of the old installation and upgrade shell scripts. At this time, sysinst is not capable of installing distribution sets from tape. In such a case, you should fallback to the shell script installation or upgrade procedure. In all other cases, sysinst should be used. Note that as soon as sysinst can deal with tapes, the shell script tools will be removed.
The miniroot's install program (both sysinst and the shell script version) will:
RAMDISK
kernel.
Note that partition sizes and offsets are expressed in sectors. When you fill out the disklabel, you will need to specify partition types and file system parameters. If you're unsure what these values should be, use the following defaults:
fstype: 4.2BSD
fsize: 1024
bsize: 4096
cpg: 16
If the partition will be a swap partition, use the following:
fstype: swap
fsize: 0 (or blank)
bsize: 0 (or blank)
cpg: 0 (or blank)
Note that partition
`c
'
is special; it covers then entire
disk and should not be assigned to a file system.
The number of partitions is currently fixed at 8.
foo
instead of
foo.bar.org
.
If, during the process of configuring
the network interfaces, you make a mistake, you will
be able to re-configure that interface by simply selecting
it for configuration again.
/etc/fstab
.
/
).
/dev
.
/
).
First-time installation on a system through a method other than the installation program is possible, but strongly discouraged.
Using sysinst, installing NetBSD is a relatively easy process. You still should read this document and have it in hand when doing the installation process. This document tries to be a good guideline for the installation and as such covers many details for the sake of completeness. Do not let this discourage you; the install program is not hard to use.
The following is a walk-through of the steps you will take while
getting
NetBSD
installed on your hard disk.
sysinst
is a menu driven
installation system that allows for some freedom in doing the
installation.
Sometimes, questions will be asked and in many cases
the default answer will be displayed in brackets
(``[ ]'')
after the question.
If you wish to stop the installation, you may press
CONTROL-C
at any time, but if you do, you'll have to begin the installation
process again from scratch by running the
/sysinst
program from the command prompt.
It is not necessary to reboot.
First, let's describe a quick install. The other sections of this document go into the installation procedure in more detail, but you may find that you do not need this. If you want detailed instructions, skip to the next section. This section describes a basic installation, using a CD-ROM install as an example.
.***********************************************.
* NetBSD-4.0 Install System *
* *
*>a: Install NetBSD to hard disk *
* b: Upgrade NetBSD on a hard disk *
* c: Re-install sets or install additional sets *
* d: Reboot the computer *
* e: Utility menu *
* x: Exit Install System *
.***********************************************.
root
,
and set a password for that account.
You are also advised to edit the file
/etc/rc.conf
to match your system needs.
/usr/X11R6/lib/X11/doc
.
Further information can be found on
http://www.xfree86.org/.
Boot your machine. The boot loader will start, and will print a countdown and begin booting.
If the boot loader messages do not appear in a reasonable amount of time, you either have a bad boot floppy or a hardware problem. Try writing the install floppy image to a different disk, and using that.
It will take a while to load the kernel
from the floppy,
probably around a minute or so, then, the kernel boot messages
will be displayed.
This may take a little while also, as
NetBSD
will be probing your system to discover which hardware devices are
installed.
The most important thing to know is that
wd0
is
NetBSD's
name for your first IDE disk,
wd1
the second, etc.
sd0
is your first SCSI disk,
sd1
the second, etc.
Note that once the system has finished booting, you need not leave the floppy in the disk drive.
Once NetBSD has booted and printed all the boot messages, you will be presented with a welcome message and a main menu. It will also include instructions for using the menus.
If you will not use network operation during the installation, but you do want your machine to be configured for networking once it is installed, you should first go to the Utility menu, and select the Configure network option. If you only want to temporarily use networking during the installation, you can specify these parameters later. If you are not using the Domain Name System (DNS), you can give an empty response in reply to answers relating to this.
To start the installation, select Install NetBSD to hard disk from the main menu.
The first thing is to identify the disk on which you want to
install
NetBSD.
sysinst
will report a list of disks it finds
and ask you for your selection.
Depending on how many disks are found, you may get a different message.
You should see disk names like
sd0
or
sd1
.
You will be asked if you want to use the entire disk or only part of the disk. If you decide to use the entire disk for NetBSD, it will be checked if there are already other systems present on the disk, and you will be asked to confirm whether you want to overwrite these.
The partition table of the NetBSD part of a disk is called a disklabel. There are 4 layouts for the NetBSD part of the disk that you can pick from: Standard, Standard with X, Custom and Use Existing. The first two use a set of default values (that you can change) suitable for a normal installation, possibly including X. With the Custom option you can specify everything yourself. The last option uses the partition info already present on the disk.
You will be presented with the current layout of the NetBSD disklabel, and given a chance to change it. For each partition, you can set the type, offset and size, block and fragment size, and the mount point. The type that NetBSD uses for normal file storage is called 4.2BSD. A swap partition has a special type called swap. Some partitions in the disklabel have a fixed purpose.
a
/
)
b
c
d-h
d
is the partition mounted on
/usr
,
but this is historical practice and not a fixed value.
You will then be asked to name your disk's disklabel. The default response will be ok for most purposes. If you choose to name it something different, make sure the name is a single word and contains no special characters. You don't need to remember this name.
You are now at the point of no return.
Nothing has been
written to your disk yet, but if you confirm that you want to
install
NetBSD,
your hard drive will be modified.
If you are sure you want to proceed, enter
yes
at the prompt.
The install program will now label your disk and make the file systems you specified. The file systems will be initialized to contain NetBSD bootstrapping binaries and configuration files. You will see messages on your screen from the various NetBSD disk preparation tools that are running. There should be no errors in this section of the installation. If there are, restart from the beginning of the installation process. Otherwise, you can continue the installation program after pressing the return key.
The NetBSD distribution consists of a number of sets, that come in the form of gzipped tarfiles. A few sets must be installed for a working system, others are optional. At this point of the installation, you will be presented with a menu which enables you to choose from one of the following methods of installing the sets. Some of these methods will first load the sets on your hard disk, others will extract the sets directly.
For all these methods, the first step is making the sets available for extraction, and then do the actual installation. The sets can be made available in a few different ways. The following sections describe each of those methods. After reading the one about the method you will be using, you can continue to the section labeled `Extracting the distribution sets'.
To be able to install using ftp, you first need to configure
your network setup, if you haven't already at the start of
the install procedure.
sysinst
will do this for you, asking you
if you want to use DHCP, and if not
to provide data like IP address, hostname, etc.
If you do not have name service set up for the machine that you
are installing on, you can just press
RETURN
in answer to these questions, and DNS will not be used.
You will also be asked to specify the host that you want to transfer the sets from, the directory on that host, the account name and password used to log into that host using ftp, and optionally a proxy server to use. If you did not set up DNS when answering the questions to configure networking, you will need to specify an IP address instead of a hostname for the ftp server.
sysinst will proceed to transfer all the default set files from the remote site to your hard disk.
To be able to install using NFS, you first need to configure
your network setup, if you haven't already at the start of
the install procedure.
sysinst
will do this for you, asking you
if you want to use DHCP, and if not
to provide data like IP address, hostname, etc.
If you do not have name service set up for the machine that you
are installing on, you can just press
RETURN
in answer to these questions, and DNS will not be used.
You will also be asked to specify the host that you want to transfer the sets from, and the directory on that host that the files are in. This directory should be mountable by the machine you are installing on, i.e. correctly exported to your machine.
If you did not set up DNS when answering the questions to configure networking, you will need to specify an IP address instead of a hostname for the NFS server.
When installing from a CD-ROM, you will be asked to specify
the device name for your CD-ROM player
(usually cd0
),
and the directory name on the CD-ROM where the distribution files are.
sysinst will then check if the files are indeed available in the specified location, and proceed to the actual extraction of the sets.
In order to install from a local file system, you will
need to specify the device that the file system resides
on
(for example sd1e
)
the type of the file system,
and the directory on the specified file system where the sets are located.
sysinst
will then check if it
can indeed access the sets at that location.
This option assumes that you have already done some preparation yourself. The sets should be located in a directory on a file system that is already accessible. sysinst will ask you for the name of this directory.
After the install sets containing the NetBSD distribution have been made available, you can either extract all the sets (a full installation), or only extract sets that you have selected. In the latter case, you will be shown the currently selected sets, and given the opportunity to select the sets you want. Some sets always need to be installed (kern, base, and etc) they will not be shown in this selection menu.
Before extraction begins, you can elect to watch the files being extracted; the name of each file that is extracted will be shown. This can slow down the installation process considerably, especially on machines with slow graphics consoles or serial consoles. Alternatively, you will be asked if you wish to have a progress bar. This is the preferred option as it shows progress without significantly slowing down the installation process.
After all the files have been extracted, all the necessary device node files will be created. If you have already configured networking, you will be asked if you want to use this configuration for normal operation. If so, these values will be installed in the network configuration files. The next menu will allow you to select the time zone that you're in, to make sure your clock has the right offset from UTC. Finally you will be asked to select a password encryption algorithm and can then set a password for the "root" account, to prevent the machine coming up without access restrictions.
Congratulations, you have successfully installed NetBSD 4.0. You can now reboot the machine, and boot NetBSD from hard disk.
Once you've got the operating system running, there are a few things you need to do in order to bring the system into a properly configured state, with the most important ones described below.
/etc/rc.conf
If you or the installation software haven't done any configuration of
/etc/rc.conf
(sysinst
usually will),
the system will drop you into single user mode on first reboot with the
message
/etc/rc.conf
is
not
configured.
Multiuser
boot
aborted.
and with the root file system
(/
)
mounted read-only.
When the system asks you to choose a shell, simply press
RETURN
to get to a
/bin/sh
prompt.
If you are asked for a terminal type, respond with
vt220
(or whatever is appropriate for your terminal type)
and press
RETURN
.
You may need to type one of the following commands to get your delete key
to work properly, depending on your keyboard:
#
stty erase '^h'
#
stty erase '^?'
At this point, you need to configure at least
one file in the
/etc
directory.
You will need to mount your root file system read/write with:
#
/sbin/mount -u -w /
Change to the
/etc
directory and take a look at the
/etc/rc.conf
file.
Modify it to your tastes, making sure that you set
rc_configured=YES
so that your changes will be enabled and a multi-user boot can
proceed.
Default values for the various programs can be found in
/etc/defaults/rc.conf
,
where some in-line documentation may be found.
More complete documentation can be found in
rc.conf(5)
.
If your
/usr
directory is on a separate partition and you do not know how to use
ed,
you will have to mount your
/usr
partition to gain access to
ex
or
vi.
Do the following:
#
mount /usr
#
export TERM=vt220
If you have
/var
on a separate partition, you need to repeat that step for it.
After that, you can edit
/etc/rc.conf
with
vi(1)
.
When you have finished, type
exit
at the prompt to
leave the single-user shell and continue with the multi-user boot.
Other values that need to be set in
/etc/rc.conf
for a networked environment are
hostname
and possibly
defaultroute,
furthermore add an
ifconfig_int
for your
<int>
network interface,
along the lines of
ifconfig_le0="inet
123.45.67.89
netmask
255.255.255.0"
or, if you have
myname.my.dom
in
/etc/hosts
:
ifconfig_le0="inet
myname.my.dom
netmask
255.255.255.0"
To enable proper hostname resolution, you will also want to add an
/etc/resolv.conf
file or (if you are feeling a little more adventurous) run
named(8)
.
See
resolv.conf(5)
or
named(8)
for more information.
Instead of manually configuring network and naming service,
DHCP can be used by setting
dhclient=YES
in
/etc/rc.conf
.
Other files in
/etc
that may require modification or setting up include
/etc/mailer.conf
,
/etc/nsswitch.conf
,
and
/etc/wscons.conf
.
After reboot, you can log in as
root
at the login prompt.
Unless you've set a password in
sysinst,
there
is no initial password.
If you're using the machine in a networked environment,
you should create an account for yourself (see below) and protect it and the
``root''
account with good passwords.
By default, root login from the network is disabled (even via
ssh(1)
).
One way to become root over the network is to log in as a different
user that belongs to group
``wheel''
(see
group(5)
)
and use
su(1)
to become root.
Unless you have connected an unusual terminal device as the console
you can just press
RETURN
when it prompts for
Terminal
type?
[...]
.
Use the
useradd(8)
command to add accounts to your system.
Do not
edit
/etc/passwd
directly! See
vipw(8)
and
pwd_mkdb(8)
if you want to edit the password database.
If you have installed the X Window System, look at the files in
/usr/X11R6/lib/X11/doc
for information.
Don't forget to add
/usr/X11R6/bin
to your path in your shell's dot file so that you have access to the X binaries.
If you wish to install any of the software freely available for UNIX-like systems you are strongly advised to first check the NetBSD package system. This automatically handles any changes necessary to make the software run on NetBSD, retrieval and installation of any other packages on which the software may depend, and simplifies installation (and deinstallation), both from source and precompiled binaries.
4.0/mvme68k/All
subdir.
You can install them with the following commands under
sh(1)
:
# PKG_PATH=ftp://ftp.NetBSD.org/pub/NetBSD/packages/4.0/mvme68k/All # export PKG_PATH # pkg_add -v tcsh # pkg_add -v bash # pkg_add -v perl # pkg_add -v apache # pkg_add -v kde # pkg_add -v firefox ...
If you are using
csh(1)
then replace the first two lines with the following:
# setenv PKG_PATH ftp://ftp.NetBSD.org/pub/NetBSD/packages/4.0/mvme68k/All ...
The above commands will install the Tenex-csh and Bourne Again shell, the Perl programming language, Apache web server, KDE desktop environment and the Firefox web browser as well as all the packages they depend on.
/usr/pkgsrc
(though other locations work fine), with the commands:
#
mkdir /usr/pkgsrc
#
cd /usr/pkgsrc
#
tar -zxpf pkgsrc.tar.gz
After extracting, see the
README
and
doc/pkgsrc.txt
files in the extraction directory (e.g.
/usr/pkgsrc/README
)
for more information.
/etc/mail/aliases
to forward root mail to the right place.
Don't forget to run
newaliases(1)
afterwards.
/etc/postfix/main.cf
file will almost definitely need to be adjusted.
If you prefer a different MTA, then install it using the
NetBSD
package system or by hand and adjust
/etc/mailer.conf
.
/etc/rc.local
to run any local daemons you use.
/etc
files are documented in section 5 of the manual; so just invoking
#
man 5 filename
is likely to give you more information on these files.
It is possible to easily upgrade your existing NetBSD/mvme68k system using the upgrade program in the miniroot or by manually performing the same steps as the miniroot upgrade program.
/etc/fstab
,
changing the occurrences of
ufs
to
ffs
and let you edit the resulting file.
/dev
.
/
).
#
/sbin/fsck -pf
#
/sbin/mount -a -t nonfs
/usr
or
/usr/share
on an NFS server, you will want to mount those file systems as well.
To do this, you will need to enable the network:
#
sh /etc/rc.d/network start
/
)
and extract
the
base
binary set:
#
cd /
#
pax -zrvpe -f /path/to/base.tgz
#
cd /usr/mdec
#
cp bootsd /.bootsd
#
./installboot /.bootsd bootxx < root-disk
E.g.:
root-disk
could be
/dev/rsd0a
.
#
sync
#
cd /
#
pax -zrvpe -f path_to_set
Users upgrading from previous versions of NetBSD may wish to bear the following problems and compatibility issues in mind when upgrading to NetBSD 4.0 .
N.B. when using sysinst for upgrading, it will automatically invoke
postinstall fix
It is
very important
that you populate the directory
/etc/pam.d
with appropriate configuration files for Pluggable Authentication Modules
(PAM) because you will not be able to login any more otherwise. Using
postinstall
as described below will take care of this. Please refer to
http://www.NetBSD.org/docs/guide/en/chap-pam.html
for documentation about PAM.
The following issues can generally be resolved by running postinstall with the etc set :
postinstall -s /path/to/etc.tgz check
postinstall -s /path/to/etc.tgz fix
Issues fixed by postinstall:
/etc
need upgrading.
These include:
/etc/defaults/*
/etc/mtree/*
/etc/pam.d/*
/etc/daily
/etc/weekly
/etc/monthly
/etc/security
/etc/rc.subr
/etc/rc
/etc/rc.shutdown
/etc/rc.d/*
The following issues need to be resolved manually:
The following issues can generally be resolved by running postinstall with the etc set :
postinstall -s /path/to/etc.tgz check
postinstall -s /path/to/etc.tgz fix
Issues fixed by postinstall:
/etc
need upgrading.
These include:
/etc/defaults/*
/etc/mtree/*
/etc/daily
/etc/weekly
/etc/monthly
/etc/security
/etc/rc.subr
/etc/rc
/etc/rc.shutdown
/etc/rc.d/*
/etc/envsys.conf
The following issues need to be resolved manually:
postinstall -s /path/to/etc.tgz fix mailerconf
/etc/mailer.conf
file to use Postfix as the MTA. When using
sysinst
to upgrade the system, it will ask if you want this to be done.
Note that if you have a customized Sendmail setup, you need to set up Postfix in an equivalent way; there is no tool for automatic conversion of Sendmail configuration to a Postfix one.
Postfix will be started up automatically when the system boots.
You may see messages like "$sendmail is not set properly" at boot.
You can suppress them by removing
/etc/rc.d/sendmail
and
/etc/rc.d/smmsp
.
Those files and other parts of sendmail configuration like files under
/usr/share/sendmail
are not removed by default
while upgrading for those who want to continue using sendmail from
outside the base system.
If you want to delete them,
postinstall
can be used:
postinstall -s /path/to/etc.tgz fix sendmail
Both issues have been addressed on the wrstuden-fixsa branch, but did not make it into the NetBSD release. Both will be fixed in the next patch release.
Documentation is available if you first install the manual
distribution set.
Traditionally, the
``man pages''
(documentation) are denoted by
`name(section)
'.
Some examples of this are
intro(1)
,
man(1)
,
apropros(1)
,
passwd(1)
,
and
passwd(5)
.
The section numbers group the topics into several categories, but three are of primary interest: user commands are in section 1, file formats are in section 5, and administrative information is in section 8.
The man command is used to view the documentation on a topic, and is started by entering man[ section] topic. The brackets [] around the section should not be entered, but rather indicate that the section is optional. If you don't ask for a particular section, the topic with the lowest numbered section name will be displayed. For instance, after logging in, enter
#
man passwd
to read the documentation for
passwd(1)
.
To view the documentation for
passwd(5)
,
enter
#
man 5 passwd
instead.
If you are unsure of what man page you are looking for, enter
#
apropos subject-word
where subject-word is your topic of interest; a list of possibly related man pages will be displayed.
If you've got something to say, do so! We'd like your input. There are various mailing lists available via the mailing list server at majordomo@NetBSD.org. To get help on using the mailing list server, send mail to that address with an empty body, and it will reply with instructions.
There are various mailing lists set up to deal with comments and questions about this release. Please send comments to: netbsd-comments@NetBSD.org.
To report bugs, use the
send-pr(1)
command shipped with
NetBSD,
and fill in as much information about the problem as you can.
Good bug reports include lots of details.
Additionally, bug reports can be sent by mail to:
netbsd-bugs@NetBSD.org.
Use of
send-pr(1)
is encouraged, however, because bugs reported with it
are entered into the
NetBSD
bugs database, and thus can't slip through
the cracks.
There are also port-specific mailing lists, to discuss aspects of each port of NetBSD. Use majordomo to find their addresses, or visit http://www.NetBSD.org/mailinglists/. If you're interested in doing a serious amount of work on a specific port, you probably should contact the `owner' of that port (listed below).
If you'd like to help with this effort, and have an idea as to how you could be useful, send us mail or subscribe to: netbsd-help@NetBSD.org.
As a favor, please avoid mailing huge documents or files to these mailing lists. Instead, put the material you would have sent up for FTP or WWW somewhere, then mail the appropriate list about it, or, if you'd rather not do that, mail the list saying you'll send the data to those who want it.
Keith Bostic Ralph Campbell Mike Karels Marshall Kirk McKusick
for their ongoing work on BSD systems, support, and encouragement.
(in alphabetical order)
The NetBSD core group: | |||
Alistair Crooks | agc@NetBSD.org | ||
Quentin Garnier | cube@NetBSD.org | ||
YAMAMOTO Takashi | yamt@NetBSD.org | ||
Matt Thomas | matt@NetBSD.org | ||
Christos Zoulas | christos@NetBSD.org | ||
| |||
The portmasters (and their ports): | |||
Anders Magnusson | ragge | vax | |
Andrew Doran | ad | amd64 | |
Andrew Doran | ad | i386 | |
Andrey Petrov | petrov | sparc64 | |
Ben Harris | bjh21 | acorn26 | |
Cherry G. Mathew | cherry | ia64 | |
Chris Gilbert | chris | cats | |
Darrin Jewell | dbj | next68k | |
Erik Berls | cyber | cobalt | |
Gavan Fantom | gavan | iyonix | |
IWAMOTO Toshihiro | toshii | hpcarm | |
Ichiro FUKUHARA | ichiro | hpcarm | |
Ignatios Souvatzis | is | amiga | |
Izumi Tsutsui | tsutsui | ews4800mips | |
Izumi Tsutsui | tsutsui | hp300 | |
Izumi Tsutsui | tsutsui | news68k | |
Jaime A Fournier | ober | bebox | |
Jaime A Fournier | ober | zaurus | |
Jason Thorpe | thorpej | algor | |
Jason Thorpe | thorpej | evbarm | |
Jason Thorpe | thorpej | shark | |
Jonathan Stone | jonathan | pmax | |
Julian Coleman | jdc | atari | |
Manuel Bouyer | bouyer | xen | |
Marcus Comstedt | marcus | dreamcast | |
Martin Husemann | martin | sparc64 | |
Matt Fredette | fredette | sun2 | |
Matt Thomas | matt | alpha | |
Matt Thomas | matt | netwinder | |
Matthias Drochner | drochner | cesfic | |
Michael Lorenz | macallan | macppc | |
NISHIMURA Takeshi | nsmrtks | x68k | |
Nathan Williams | nathanw | sun3 | |
Nick Hudson | skrll | hp700 | |
Noriyuki Soda | soda | arc | |
Paul Kranenburg | pk | sparc | |
Phil Nelson | phil | pc532 | |
Reinoud Zandijk | reinoud | acorn32 | |
Ross Harvey | ross | alpha | |
Søren Jørvang | soren | sgimips | |
Scott Reynolds | scottr | mac68k | |
Shin Takemura | takemura | hpcmips | |
Simon Burge | simonb | evbmips | |
Simon Burge | simonb | pmax | |
Simon Burge | simonb | sbmips | |
Steve Woodford | scw | evbppc | |
Steve Woodford | scw | mvme68k | |
Steve Woodford | scw | mvmeppc | |
Takayoshi Kochi | kochi | ia64 | |
Tim Rightnour | garbled | prep | |
Tohru Nishimura | nisimura | luna68k | |
Tohru Nishimura | nisimura | sandpoint | |
Wayne Knowles | wdk | mipsco | |
Wolfgang Solfrank | ws | ofppc
| |
The NetBSD 4.0 Release Engineering team: | |||
Grant Beattie | grant@NetBSD.org | ||
Manuel Bouyer | bouyer@NetBSD.org | ||
David Brownlee | abs@NetBSD.org | ||
Pavel Cahyna | pavel@NetBSD.org | ||
James Chacon | jmc@NetBSD.org | ||
Julian Coleman | jdc@NetBSD.org | ||
Håvard Eidnes | he@NetBSD.org | ||
Liam J. Foy | liamjfoy@NetBSD.org | ||
John Heasley | heas@NetBSD.org | ||
Geert Hendrickx | ghen@NetBSD.org | ||
Soren Jacobsen | snj@NetBSD.org | ||
Daniel de Kok | daniel@NetBSD.org | ||
Phil Nelson | phil@NetBSD.org | ||
Jeff Rizzo | riz@NetBSD.org | ||
| |||
NetBSD Developers: | |||
Nathan Ahlstrom | nra@NetBSD.org | ||
Steve Allen | wormey@NetBSD.org | ||
Jukka Andberg | jandberg@NetBSD.org | ||
Julian Assange | proff@NetBSD.org | ||
Lennart Augustsson | augustss@NetBSD.org | ||
Christoph Badura | bad@NetBSD.org | ||
Bang Jun-Young | junyoung@NetBSD.org | ||
Dieter Baron | dillo@NetBSD.org | ||
Robert V. Baron | rvb@NetBSD.org | ||
Alan Barrett | apb@NetBSD.org | ||
Grant Beattie | grant@NetBSD.org | ||
Jason Beegan | jtb@NetBSD.org | ||
Erik Berls | cyber@NetBSD.org | ||
Hiroyuki Bessho | bsh@NetBSD.org | ||
John Birrell | jb@NetBSD.org | ||
Mason Loring Bliss | mason@NetBSD.org | ||
Charles Blundell | cb@NetBSD.org | ||
Rafal Boni | rafal@NetBSD.org | ||
Stephen Borrill | sborrill@NetBSD.org | ||
Sean Boudreau | seanb@NetBSD.org | ||
Manuel Bouyer | bouyer@NetBSD.org | ||
John Brezak | brezak@NetBSD.org | ||
Allen Briggs | briggs@NetBSD.org | ||
Mark Brinicombe | mark@NetBSD.org | ||
Aaron Brown | abrown@NetBSD.org | ||
Andrew Brown | atatat@NetBSD.org | ||
David Brownlee | abs@NetBSD.org | ||
Frederick Bruckman | fredb@NetBSD.org | ||
Jon Buller | jonb@NetBSD.org | ||
Simon Burge | simonb@NetBSD.org | ||
Robert Byrnes | byrnes@NetBSD.org | ||
Pavel Cahyna | pavel@NetBSD.org | ||
D'Arcy J.M. Cain | darcy@NetBSD.org | ||
Dave Carrel | carrel@NetBSD.org | ||
Daniel Carosone | dan@NetBSD.org | ||
James Chacon | jmc@NetBSD.org | ||
Bill Coldwell | billc@NetBSD.org | ||
Julian Coleman | jdc@NetBSD.org | ||
Ben Collver | ben@NetBSD.org | ||
Jeremy Cooper | jeremy@NetBSD.org | ||
Chuck Cranor | chuck@NetBSD.org | ||
Alistair Crooks | agc@NetBSD.org | ||
Aidan Cully | aidan@NetBSD.org | ||
Garrett D'Amore | gdamore@NetBSD.org | ||
Johan Danielsson | joda@NetBSD.org | ||
John Darrow | jdarrow@NetBSD.org | ||
Jed Davis | jld@NetBSD.org | ||
Matt DeBergalis | deberg@NetBSD.org | ||
Arnaud Degroote | degroote@NetBSD.org | ||
Rob Deker | deker@NetBSD.org | ||
Chris G. Demetriou | cgd@NetBSD.org | ||
Tracy Di Marco White | gendalia@NetBSD.org | ||
Jaromír Dolecek | jdolecek@NetBSD.org | ||
Andy Doran | ad@NetBSD.org | ||
Roland Dowdeswell | elric@NetBSD.org | ||
Emmanuel Dreyfus | manu@NetBSD.org | ||
Matthias Drochner | drochner@NetBSD.org | ||
Jun Ebihara | jun@NetBSD.org | ||
Håvard Eidnes | he@NetBSD.org | ||
Stoned Elipot | seb@NetBSD.org | ||
Michael van Elst | mlelstv@NetBSD.org | ||
Enami Tsugutomo | enami@NetBSD.org | ||
Bernd Ernesti | veego@NetBSD.org | ||
Erik Fair | fair@NetBSD.org | ||
Gavan Fantom | gavan@NetBSD.org | ||
Hauke Fath | hauke@NetBSD.org | ||
Hubert Feyrer | hubertf@NetBSD.org | ||
Jason R. Fink | jrf@NetBSD.org | ||
Matt J. Fleming | mjf@NetBSD.org | ||
Marty Fouts | marty@NetBSD.org | ||
Liam J. Foy | liamjfoy@NetBSD.org | ||
Matt Fredette | fredette@NetBSD.org | ||
Thorsten Frueauf | frueauf@NetBSD.org | ||
Castor Fu | castor@NetBSD.org | ||
Ichiro Fukuhara | ichiro@NetBSD.org | ||
Quentin Garnier | cube@NetBSD.org | ||
Thomas Gerner | thomas@NetBSD.org | ||
Simon J. Gerraty | sjg@NetBSD.org | ||
Justin Gibbs | gibbs@NetBSD.org | ||
Chris Gilbert | chris@NetBSD.org | ||
Eric Gillespie | epg@NetBSD.org | ||
Michael Graff | explorer@NetBSD.org | ||
Brian C. Grayson | bgrayson@NetBSD.org | ||
Matthew Green | mrg@NetBSD.org | ||
Andreas Gustafsson | gson@NetBSD.org | ||
Ulrich Habel | rhaen@NetBSD.org | ||
Jun-ichiro itojun Hagino | itojun@NetBSD.org | ||
Adam Hamsik | haad@NetBSD.org | ||
Juergen Hannken-Illjes | hannken@NetBSD.org | ||
Charles M. Hannum | mycroft@NetBSD.org | ||
Ben Harris | bjh21@NetBSD.org | ||
Ross Harvey | ross@NetBSD.org | ||
Eric Haszlakiewicz | erh@NetBSD.org | ||
John Hawkinson | jhawk@NetBSD.org | ||
HAMAJIMA Katsuomi | hamajima@NetBSD.org | ||
HAYAKAWA Koichi | haya@NetBSD.org | ||
John Heasley | heas@NetBSD.org | ||
Geert Hendrickx | ghen@NetBSD.org | ||
René Hexel | rh@NetBSD.org | ||
Iain Hibbert | plunky@NetBSD.org | ||
Kouichirou Hiratsuka | hira@NetBSD.org | ||
Michael L. Hitch | mhitch@NetBSD.org | ||
Jachym Holecek | freza@NetBSD.org | ||
Christian E. Hopps | chopps@NetBSD.org | ||
Ken Hornstein | kenh@NetBSD.org | ||
Marc Horowitz | marc@NetBSD.org | ||
Eduardo Horvath | eeh@NetBSD.org | ||
Nick Hudson | skrll@NetBSD.org | ||
Shell Hung | shell@NetBSD.org | ||
Martin Husemann | martin@NetBSD.org | ||
Dean Huxley | dean@NetBSD.org | ||
Love Hörnquist Åstrand | lha@NetBSD.org | ||
Bernardo Innocenti | bernie@NetBSD.org | ||
Tetsuya Isaki | isaki@NetBSD.org | ||
ITOH Yasufumi | itohy@NetBSD.org | ||
IWAMOTO Toshihiro | toshii@NetBSD.org | ||
Matthew Jacob | mjacob@NetBSD.org | ||
Soren Jacobsen | snj@NetBSD.org | ||
Lonhyn T. Jasinskyj | lonhyn@NetBSD.org | ||
Darrin Jewell | dbj@NetBSD.org | ||
Nicolas Joly | njoly@NetBSD.org | ||
Chris Jones | cjones@NetBSD.org | ||
Søren Jørvang | soren@NetBSD.org | ||
Takahiro Kambe | taca@NetBSD.org | ||
Antti Kantee | pooka@NetBSD.org | ||
Masanori Kanaoka | kanaoka@NetBSD.org | ||
Frank Kardel | kardel@NetBSD.org | ||
Mattias Karlsson | keihan@NetBSD.org | ||
KAWAMOTO Yosihisa | kawamoto@NetBSD.org | ||
Mario Kemper | magick@NetBSD.org | ||
Min Sik Kim | minskim@NetBSD.org | ||
Thomas Klausner | wiz@NetBSD.org | ||
Klaus Klein | kleink@NetBSD.org | ||
John Klos | jklos@NetBSD.org | ||
Wayne Knowles | wdk@NetBSD.org | ||
Takayoshi Kochi | kochi@NetBSD.org | ||
John Kohl | jtk@NetBSD.org | ||
Daniel de Kok | daniel@NetBSD.org | ||
Paul Kranenburg | pk@NetBSD.org | ||
Lubomir Kundrak | lkundrak@NetBSD.org | ||
Martti Kuparinen | martti@NetBSD.org | ||
Kentaro A. Kurahone | kurahone@NetBSD.org | ||
Kevin Lahey | kml@NetBSD.org | ||
David Laight | dsl@NetBSD.org | ||
Johnny C. Lam | jlam@NetBSD.org | ||
Martin J. Laubach | mjl@NetBSD.org | ||
Greg Lehey | grog@NetBSD.org | ||
Ted Lemon | mellon@NetBSD.org | ||
Christian Limpach | cl@NetBSD.org | ||
Frank van der Linden | fvdl@NetBSD.org | ||
Joel Lindholm | joel@NetBSD.org | ||
Mike Long | mikel@NetBSD.org | ||
Michael Lorenz | macallan@NetBSD.org | ||
Warner Losh | imp@NetBSD.org | ||
Tomasz Luchowski | zuntum@NetBSD.org | ||
Federico Lupi | federico@NetBSD.org | ||
Brett Lymn | blymn@NetBSD.org | ||
Paul Mackerras | paulus@NetBSD.org | ||
Anders Magnusson | ragge@NetBSD.org | ||
MAEKAWA Masahide | gehenna@NetBSD.org | ||
David Maxwell | david@NetBSD.org | ||
Dan McMahill | dmcmahill@NetBSD.org | ||
Gregory McGarry | gmcgarry@NetBSD.org | ||
Jared D. McNeill | jmcneill@NetBSD.org | ||
Neil J. McRae | neil@NetBSD.org | ||
Perry Metzger | perry@NetBSD.org | ||
Simas Mockevicius | symka@NetBSD.org | ||
Juan Romero Pardines | xtraeme@NetBSD.org | ||
Julio M. Merino Vidal | jmmv@NetBSD.org | ||
Minoura Makoto | minoura@NetBSD.org | ||
Luke Mewburn | lukem@NetBSD.org | ||
der Mouse | mouse@NetBSD.org | ||
Joseph Myers | jsm@NetBSD.org | ||
Ken Nakata | kenn@NetBSD.org | ||
Takeshi Nakayama | nakayama@NetBSD.org | ||
Phil Nelson | phil@NetBSD.org | ||
John Nemeth | jnemeth@NetBSD.org | ||
Bob Nestor | rnestor@NetBSD.org | ||
NISHIMURA Takeshi | nsmrtks@NetBSD.org | ||
Tohru Nishimura | nisimura@NetBSD.org | ||
NONAKA Kimihiro | nonaka@NetBSD.org | ||
Takehiko NOZAKI | tnozaki@NetBSD.org | ||
Tobias Nygren | tnn@NetBSD.org | ||
OBATA Akio | obache@NetBSD.org | ||
Jesse Off | joff@NetBSD.org | ||
Tatoku Ogaito | tacha@NetBSD.org | ||
OKANO Takayoshi | kano@NetBSD.org | ||
Masaru Oki | oki@NetBSD.org | ||
Atsushi Onoe | onoe@NetBSD.org | ||
Greg Oster | oster@NetBSD.org | ||
Jonathan Perkin | sketch@NetBSD.org | ||
Herb Peyerl | hpeyerl@NetBSD.org | ||
Matthias Pfaller | matthias@NetBSD.org | ||
Chris Pinnock | cjep@NetBSD.org | ||
Adrian Portelli | adrianp@NetBSD.org | ||
Rui Paulo | rpaulo@NetBSD.org | ||
Peter Postma | peter@NetBSD.org | ||
Dante Profeta | dante@NetBSD.org | ||
Chris Provenzano | proven@NetBSD.org | ||
Niels Provos | provos@NetBSD.org | ||
Mindaugas Rasiukevicius | rmind@NetBSD.org | ||
Michael Rauch | mrauch@NetBSD.org | ||
Marc Recht | recht@NetBSD.org | ||
Darren Reed | darrenr@NetBSD.org | ||
Jeremy C. Reed | reed@NetBSD.org | ||
Antoine Reilles | tonio@NetBSD.org | ||
Tyler R. Retzlaff | rtr@NetBSD.org | ||
Scott Reynolds | scottr@NetBSD.org | ||
Michael Richardson | mcr@NetBSD.org | ||
Tim Rightnour | garbled@NetBSD.org | ||
Alan Ritter | rittera@NetBSD.org | ||
Jeff Rizzo | riz@NetBSD.org | ||
Gordon Ross | gwr@NetBSD.org | ||
Steve Rumble | rumble@NetBSD.org | ||
Ilpo Ruotsalainen | lonewolf@NetBSD.org | ||
Heiko W. Rupp | hwr@NetBSD.org | ||
David Sainty | dsainty@NetBSD.org | ||
SAITOH Masanobu | msaitoh@NetBSD.org | ||
Kazuki Sakamoto | sakamoto@NetBSD.org | ||
Curt Sampson | cjs@NetBSD.org | ||
Wilfredo Sanchez | wsanchez@NetBSD.org | ||
Ty Sarna | tsarna@NetBSD.org | ||
SATO Kazumi | sato@NetBSD.org | ||
Jan Schaumann | jschauma@NetBSD.org | ||
Matthias Scheler | tron@NetBSD.org | ||
Karl Schilke (rAT) | rat@NetBSD.org | ||
Amitai Schlair | schmonz@NetBSD.org | ||
Konrad Schroder | perseant@NetBSD.org | ||
Georg Schwarz | schwarz@NetBSD.org | ||
Lubomir Sedlacik | salo@NetBSD.org | ||
Christopher SEKIYA | sekiya@NetBSD.org | ||
Reed Shadgett | dent@NetBSD.org | ||
John Shannon | shannonjr@NetBSD.org | ||
Tim Shepard | shep@NetBSD.org | ||
Takeshi Shibagaki | shiba@NetBSD.org | ||
Naoto Shimazaki | igy@NetBSD.org | ||
Takao Shinohara | shin@NetBSD.org | ||
Takuya SHIOZAKI | tshiozak@NetBSD.org | ||
Daniel Sieger | dsieger@NetBSD.org | ||
Chuck Silvers | chs@NetBSD.org | ||
Thor Lancelot Simon | tls@NetBSD.org | ||
Jeff Smith | jeffs@NetBSD.org | ||
Noriyuki Soda | soda@NetBSD.org | ||
Wolfgang Solfrank | ws@NetBSD.org | ||
T K Spindler | dogcow@NetBSD.org | ||
SOMEYA Yoshihiko | someya@NetBSD.org | ||
Bill Sommerfeld | sommerfeld@NetBSD.org | ||
Jörg Sonnenberger | joerg@NetBSD.org | ||
Ignatios Souvatzis | is@NetBSD.org | ||
Bill Squier | groo@NetBSD.org | ||
Jonathan Stone | jonathan@NetBSD.org | ||
Bill Studenmund | wrstuden@NetBSD.org | ||
Kevin Sullivan | sullivan@NetBSD.org | ||
SUNAGAWA Keiki | kei@NetBSD.org | ||
Kimmo Suominen | kim@NetBSD.org | ||
Shin Takemura | takemura@NetBSD.org | ||
TAMURA Kent | kent@NetBSD.org | ||
Shin'ichiro TAYA | taya@NetBSD.org | ||
Ian Lance Taylor | ian@NetBSD.org | ||
Matt Thomas | matt@NetBSD.org | ||
Jason Thorpe | thorpej@NetBSD.org | ||
Christoph Toshok | toshok@NetBSD.org | ||
Greg Troxel | gdt@NetBSD.org | ||
Tsubai Masanari | tsubai@NetBSD.org | ||
Izumi Tsutsui | tsutsui@NetBSD.org | ||
UCHIYAMA Yasushi | uch@NetBSD.org | ||
Masao Uebayashi | uebayasi@NetBSD.org | ||
Shuichiro URATA | ur@NetBSD.org | ||
Valeriy E. Ushakov | uwe@NetBSD.org | ||
Todd Vierling | tv@NetBSD.org | ||
Aymeric Vincent | aymeric@NetBSD.org | ||
Paul Vixie | vixie@NetBSD.org | ||
Mike M. Volokhov | mishka@NetBSD.org | ||
Krister Walfridsson | kristerw@NetBSD.org | ||
Lex Wennmacher | wennmach@NetBSD.org | ||
Leo Weppelman | leo@NetBSD.org | ||
Assar Westerlund | assar@NetBSD.org | ||
Todd Whitesel | toddpw@NetBSD.org | ||
Frank Wille | phx@NetBSD.org | ||
Nathan Williams | nathanw@NetBSD.org | ||
Rob Windsor | windsor@NetBSD.org | ||
Dan Winship | danw@NetBSD.org | ||
Arnaud Lacombe | alc@NetBSD.org | ||
Jim Wise | jwise@NetBSD.org | ||
Michael Wolfson | mbw@NetBSD.org | ||
Steve Woodford | scw@NetBSD.org | ||
Colin Wood | ender@NetBSD.org | ||
YAMAMOTO Takashi | yamt@NetBSD.org | ||
Yuji Yamano | yyamano@NetBSD.org | ||
Reinoud Zandijk | reinoud@NetBSD.org | ||
S.P.Zeidler | spz@NetBSD.org | ||
Maria Zevenhoven | maria7@NetBSD.org | ||
Christos Zoulas | christos@NetBSD.org | ||
| |||
Other contributors: | |||
Dave Burgess | burgess@cynjut.infonet.net | ||
Brian R. Gaeke | brg@dgate.org | ||
Brad Grantham | grantham@tenon.com | ||
Lawrence Kesteloot | kesteloo@cs.unc.edu | ||
Waldi Ravens | waldi@moacs.indiv.nl.net |
NetBSD 4.0 is dedicated to the memory of Jun-Ichiro "itojun" Hagino, who died in October 2007. Itojun was a member of the KAME project, which provided IPv6 and IPsec support; he was also a member of the NetBSD core team (the technical management for the project), and one of the Security Officers. Due to Itojun's efforts, NetBSD was the first open source operating system with a production ready IPv6 networking stack, which was included in the base system before many people knew what IPv6 was. We are grateful to have known and worked with Itojun, and we know that he will be missed. This release is therefore dedicated, with thanks, to his memory.
All product names mentioned herein are trademarks or registered trademarks of their respective owners.
The following notices are required to satisfy the license terms of the software that we have mentioned in this document:
NetBSD is a registered trademark of The NetBSD Foundation, Inc.
In the following statement, the phrase ``this text'' refers to portions
of the system documentation.
Portions of this text are reprinted and reproduced in electronic form in
NetBSD, from IEEE Std 1003.1, 2004 Edition, Standard for
Information Technology -- Portable Operating System Interface (POSIX),
The Open Group Base Specifications Issue 6, Copyright (C) 2001-2004 by the
Institute of Electrical and Electronics Engineers, Inc and The Open Group.
In the event of any discrepancy between these versions and the original
IEEE and The Open Group Standard, the original IEEE and The Open Group
Standard is the referee document.
The original Standard can be obtained online at
http://www.opengroup.org/unix/online.html.
This notice shall appear on any product containing this material