
THE UNDERGROUND PHP
AND ORACLE® MANUAL

CHRISTOPHER JONES AND ALISON HOLLOWAY

The Underground PHP and Oracle® Manual, Release 1.5, December 2008.
Copyright © 2008, Oracle. All rights reserved.

Authors: Christopher Jones and Alison Holloway
Contributors and acknowledgments: Vladimir Barriere, Luxi Chidambaran, Robert Clevenger, Antony
Dovgal, Wez Furlong, Sue Harper, Manuel Hoßfeld, Ken Jacobs, Srinath Krishnaswamy, Shoaib Lari, Simon
Law, Krishna Mohan, Chuck Murray, Kevin Neel, Kant Patel, Charles Poulsen, Karthik Rajan, Richard
Rendell, Roy Rossebo, Michael Sekurski, Sreekumar Seshadri, Mohammad Sowdagar, Makoto Tozawa,
Todd Trichler, Simon Watt, Zahi, Shuping Zhou.

The latest edition of this book is available online at:
http://www.oracle.com/technology/tech/php/pdf/underground-php-oracle-manual.pdf

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also
protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with
other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This document is not warranted to be
error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of
these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical,
for any purpose.

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City,
CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of such applications if the Programs are
used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or
services from a third party, the relationship is directly between you and the third party. Oracle is not
responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the
agreement with the third party, including delivery of products or services and warranty obligations related
to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you
may incur from dealing with any third party.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

CONTENTS
Chapter 1 Introduction..1

Who Should Read This Book?..1
Introduction to Oracle...1

Databases and Instances..2
Tablespaces..2
Schemas and Users..2

Introduction to PHP..2
Chapter 2 Getting Started With PHP...5

Creating and Editing PHP Scripts...5
PHP Syntax Overview..5
Running PHP Scripts..8

Running PHP Scripts in a Browser..8
Running Scripts with Command Line PHP..8
Debugging PHP Scripts...8

Chapter 3 PHP Oracle Extensions...11
PHP Oracle Extensions..11

Oracle Extension...11
OCI8 Extension...11
PDO Extension..12

PHP Database Abstraction Libraries...13
ADOdb..13
PEAR DB..14
PEAR MDB2...14

Getting the OCI8 Extension..14
OCI8 and Oracle Installation Options..15

Getting the PDO Extension...16
Zend Core for Oracle..17
The PHP Release Cycle...17

Chapter 4 Installing Oracle Database 10g Express Edition..19
Oracle Database Editions...19
Oracle Database XE...19
Installing Oracle Database XE on Linux...20
Installing Oracle Database XE on Debian, Ubuntu, and Kubuntu...21
Installing Oracle Database XE on Windows..22
Testing the Oracle Database XE Installation...24
Configuring Oracle Database XE..25

Setting the Oracle Database XE Environment Variables on Linux...25

iii

Enabling Database Startup and Shutdown from Menus on Linux..26
Starting and Stopping the Listener and Database...26
Enabling Remote Client Connection..29

Chapter 5 Using Oracle Database...31
Oracle Application Express...31

Logging In To Oracle Application Express...31
Unlocking the HR User..32
Creating Database Objects...33
Working with SQL Scripts..37
Creating a PL/SQL Procedure...38
Creating a Database User...40
Monitoring Database Sessions..42
Database Backup and Recovery...44

Oracle SQL*Plus..47
Starting SQL*Plus...48
Executing SQL and PL/SQL Statements in SQL*Plus...49
Controlling Query Output in SQL*Plus...49
Running Scripts in SQL*Plus...50
Information On Tables in SQL*Plus...50
Accessing the Demonstration Tables in SQL*Plus..51

Oracle SQL Developer..51
Creating a Database Connection..51
Creating a Table..54
Executing a SQL Query...55
Editing, Compiling and Running PL/SQL...57
Running Reports...59
Creating Reports...61

Chapter 6 Installing Apache HTTP Server..63
Installing Apache HTTP Server on Linux..63

Starting and Stopping Apache HTTP Server...64
Configuring Apache HTTP Server on Linux...64

Installing Apache HTTP Server on Windows..64
Starting and Stopping Apache HTTP Server...65

Chapter 7 Installing PHP..67
Installing PHP with OCI8 on Linux..67

Installing OCI8 Using a Local Database..67
Installing OCI8 Using Oracle Instant Client...69

Upgrading PHP with PECL OCI8 on Linux...70
Upgrading OCI8 as a Static Library on Linux ..70
Upgrading OCI8 on Linux Using the PECL Channel..71
Upgrading OCI8 as a Shared Library on Linux..72

iv

Installing PHP With OCI8 on Windows...73
Installing OCI8 Using a Local Database on Windows..73
Installing OCI8 with Instant Client on Windows...74
Upgrading OCI8 on Windows..75

Installing OCI8 with Oracle Application Server on Linux...76
Installing PHP With PDO..78

Installing PDO on Linux...79
Installing PDO on Windows...80

Checking OCI8 and PDO_OCI Installation...80
Chapter 8 Installing Zend Core for Oracle..83

Installing Zend Core for Oracle...83
Installing Zend Core for Oracle on Linux...83
Testing the Zend Core for Oracle Installation on Linux..89
Installing Zend Core for Oracle on Windows...90
Testing the Zend Core for Oracle Installation on Windows..97

Configuring Zend Core for Oracle...97
Chapter 9 Connecting to Oracle Using OCI8...101

Oracle Connection Types...101
Standard Connections...101
Multiple Unique Connections...101
Persistent Connections...101

Oracle Database Name Connection Identifiers...102
Easy Connect String..103
Database Connect Descriptor String...104
Database Connect Name..104

Common Connection Errors...105
Setting Oracle Environment Variables for Apache..106
Closing Oracle Connections...108

Close Statement Resources Before Closing Connections...109
Transactions and Connections..110
Session State with Persistent Connections..110

Optional Connection Parameters..111
Connection Character Set..111
Connection Session Mode...112

Changing the Database Password..114
Changing Passwords On Demand...114
Changing Expired Passwords..115

Tuning Oracle Connections in PHP...117
Use the Best Connection Function..117
Pass the Character Set..117
Do Not Set the Date Format Unnecessarily...117

v

Managing Persistent Connections..119
Maximum Number of Persistent Connections Allowed...119
Timeout for Unused Persistent Connections..119
Pinging for Closed Persistent Connections..119
Apache Configuration Parameters...120
Reducing Database Server Memory Used By Persistent Connections..120

Oracle Net and PHP...121
Connection Rate Limiting..121
Setting Connection Timeouts...122
Configuring Authentication Methods..122
Detecting Dead PHP Apache Sessions...123
Other Oracle Net Optimizations...123
Tracing Oracle Net..123

Connection Management in Scalable Systems...124
Chapter 10 Executing SQL Statements With OCI8..125

SQL Statement Execution Steps..125
Query Example..125
Oracle Datatypes...127

Fetch Functions..127
Fetching as a Numeric Array...128
Fetching as an Associative Array...129
Fetching as an Object...130
Defining Output Variables..131
Fetching and Working with Numbers...131
Fetching and Working with Dates..132

Insert, Update, Delete, Create and Drop..134
Transactions...134

Autonomous Transactions...136
The Transactional Behavior of Connections..137

PHP Error Handling..138
Handling OCI8 Errors..138

Tuning SQL Statements in PHP Applications..141
Using Bind Variables...141
Tuning the Prefetch Size...149
Tuning the Statement Cache Size...150
Using the Server and Client Query Result Caches..151

Limiting Rows and Creating Paged Datasets..153
Auto-Increment Columns..155
Getting the Last Insert ID..157
Exploring Oracle...157

Case Insensitive Queries...157

vi

Analytic Functions in SQL...158
Chapter 11 Using PL/SQL With OCI8..159

PL/SQL Overview...159
Blocks, Procedures, Packages and Triggers..160

Anonymous Blocks..160
Stored or Standalone Procedures and Functions..160
Packages..161
Triggers...162

Creating PL/SQL Stored Procedures in PHP..162
End of Line Terminators in PL/SQL with Windows PHP...162

Calling PL/SQL Code..163
Calling PL/SQL Procedures...163
Calling PL/SQL Functions...164
Binding Parameters to Procedures and Functions..164

Array Binding and PL/SQL Bulk Processing...165
PL/SQL Success With Information Warnings..167
Using REF CURSORS for Result Sets...168

Closing Cursors...170
Converting from REF CURSOR to PIPELINED Results..172

Oracle Collections in PHP..173
Using PL/SQL and SQL Object Types in PHP..175

Using OCI8 Collection Functions...176
Using a REF CURSOR..177
Binding an Array..179
Using a PIPELINED Function..180

Getting Output with DBMS_OUTPUT...181
PL/SQL Function Result Cache..183
Using Oracle Locator for Spatial Mapping..184

Inserting Locator Data...184
Queries Returning Scalar Values...184
Selecting Vertices Using SDO_UTIL.GETVERTICES...186
Using a Custom Function..186

Scheduling Background or Long Running Operations..188
Reusing Procedures Written for MOD_PLSQL...191

Chapter 12 Using Large Objects in OCI8..193
Working with LOBs...193

Inserting and Updating LOBs..193
Fetching LOBs...194
Temporary LOBs...195
LOBs and PL/SQL procedures..196
Other LOB Methods..197

vii

Working with BFILEs..198
Chapter 13 Using XML with Oracle and PHP...203

Fetching Relational Rows as XML..203
Fetching Rows as Fully Formed XML...204
Using the SimpleXML Extension in PHP...205
Fetching XMLType Columns...206
Inserting into XMLType Columns..207
Fetching an XMLType from a PL/SQL Function..209
XQuery XML Query Language..210
Accessing Data over HTTP with XML DB...212

Chapter 14 PHP Scalability and High Availability..213
Database Resident Connection Pooling...213

How DRCP Works...214
PHP OCI8 Connections and DRCP...216
When to use DRCP...218
Sharing the Server Pool..219

Using DRCP in PHP...220
Configuring and Enabling the Pool..221
Configuring PHP for DRCP...223
Application Deployment for DRCP...224

Monitoring DRCP..226
V$PROCESS and V$SESSION Views..227
DBA_CPOOL_INFO View...227
V$CPOOL_STATS View..227
V$CPOOL_CC_STATS View...229

High Availability with FAN and RAC..229
Configuring FAN Events in the Database..230
Configuring PHP for FAN...230
Application Deployment for FAN..230
RAC Connection Load Balancing with PHP...231

Chapter 15 Globalization..233
Establishing the Environment Between Oracle and PHP..233
Manipulating Strings...235
Determining the Locale of the User..235
Encoding HTML Pages...236

Specifying the Page Encoding for HTML Pages..236
Specifying the Encoding in the HTTP Header...237
Specifying the Encoding in the HTML Page Header..237
Specifying the Page Encoding in PHP...237

Organizing the Content of HTML Pages for Translation..237
Strings in PHP...238

viii

Static Files...238
Data from the Database..238

Presenting Data Using Conventions Expected by the User..238
Oracle Number Formats..239
Oracle Date Formats...240
Oracle Linguistic Sorts..242
Oracle Error Messages...243

Chapter 16 Testing PHP and the OCI8 Extension..245
Running OCI8 Tests..245

Running a Single Test..247
Tests that Fail..247

Creating OCI8 Tests ..248
OCI8 Test Helper Scripts...249

Configuring the Database For Testing..249
Appendix A Tracing OCI8 Internals...253

Enabling OCI8 Debugging output...253
Appendix B OCI8 php.ini Parameters...255
Appendix C OCI8 Function Names in PHP 4 and PHP 5...257
Appendix D The Obsolete Oracle Extension..261

Oracle and OCI8 Comparison..261
Appendix E Resources...267

General Information and Forums..267
Oracle Documentation..267
Selected PHP and Oracle Books..268
Software and Source Code...269
PHP Links...271

Glossary...273

ix

x

CHAPTER 1

INTRODUCTION

This book is designed to bridge the gap between the many PHP and the many Oracle texts available. It
shows how to use the PHP scripting language with the Oracle database, from installation to using them
efficiently.

The installation and database discussion in this book highlights the Oracle Database 10g Express
Edition, but everything covered in this book also applies to the other editions of the Oracle database,
including Oracle Database 11g. The PHP you write for Oracle Database 10g Express Edition can be run,
without change, against all editions of the Oracle database as well.

The book contains much unique material on PHP's Oracle OCI8 and PDO_OCI extensions. It also
incorporates several updated installation guides previously published on the Oracle Technology Network
web site. The chapter on globalization is derived from the Oracle Database Express Edition 2 Day Plus PHP
Developer Guide. Sue Harper contributed the chapter on SQL Developer. The chapter on PHP Scalability and
High Availability is derived from the Oracle whitepaper, PHP Scalability and High Availability, April 2008.

We gratefully acknowledge all the Oracle staff that contributed to this book.

Who Should Read This Book?
This book is aimed at PHP programmers who are developing applications for an Oracle database. It
bridges the gap between the many PHP and the many Oracle books available. It shows how to use the PHP
scripting language with the Oracle database, from installation to using them together efficiently.

You may already be using another database and have a requirement or a preference to move to Oracle.
You may be starting out with PHP database development. You may be unsure how to install PHP and
Oracle. You may be unclear about best practices. This book aims to remove any confusion.

This book is not a complete PHP syntax or Oracle SQL guide. It does not describe overall application
architecture. It is assumed that you already have basic PHP and SQL knowledge and want best practices in
using PHP against an Oracle database.

Since the first release of the Underground PHP and Oracle Manual there have been many commercially
available books specifically on PHP and Oracle published. They are worthwhile additions to your library.
Each has a different viewpoint and shows something new about the technologies.

Oracle’s own extensive set of documentation is freely available online. For newcomers we suggest
reading the Oracle Database Express Edition 2 Day Plus PHP Developer Guide which walks through building a
PHP application against an Oracle database. Comprehensive PHP documentation and resources are also
online.

URLs to the most useful online resources and books are listed in the Resources appendix.

Introduction to Oracle
The Oracle Database is well known for its scalability, reliability and features. It is the leading database and
is available on many platforms.

1

Introduction

There are some subtle differences between the terminology used when describing an Oracle database
and a database from other software vendors. The following overview of the main Oracle terms might help
you to understand the Oracle terminology. Check the Glossary for more descriptions.

Databases and Instances
An Oracle database stores and retrieves data. Each database consists of one or more data files. An Oracle
database server consists of an Oracle database and an Oracle instance. Every time a server is started, a shared
memory region called the system global area (SGA) is allocated and the Oracle background processes are
started. The combination of the background processes and SGA is called an Oracle instance. On some
operating systems, like Windows, there are no separate background processes. Instead threads run within
the Oracle image.

Tablespaces
Tablespaces are the logical units of data storage made up of one or more datafiles. Tablespaces are often
created for individual applications because tablespaces can be conveniently managed. Users are assigned a
default tablespace that holds all the data the users creates. A database is made up of default and DBA-
created tablespaces.

Schemas and Users
A schema is a collection of database objects such as tables and indexes. A schema is owned by a database
user and has the same name as that user. Many people use the words schema and user interchangeably.

Once you have installed PHP and want to write scripts that interact with Oracle, you need to connect as
the owner of the schema that contains the objects you want to interact with. For example, to connect to the
HR schema, you would use the username hr in PHP’s connection string.

Although you may have more than one database per machine, typically a single Oracle database
contains multiple schemas. Multiple applications can use the same database without any conflict by using
different schemas. Instead of using a CREATE DATABASE command for new applications, use the CREATE
USER command to create a new schema in the database. In Oracle Database 10g Express Edition (known as
“Oracle Database XE”) there is a wizard to create new users in the Oracle Application Express management
console.

Introduction to PHP
PHP is a hugely popular, interpreted scripting language commonly used for web applications. PHP is open
source and free, and has a BSD-style license, making it corporation-friendly. PHP is perfect for rapidly
developing applications both big and small, and is great for creating Web 2.0 applications. It powers over
twenty million web sites on the Internet and has a huge user community behind it. It runs on many
platforms.

The language is dynamically typed and easy to use. PHP comes with many extensions offering all
kinds of functionality such as database access. PHP 5 introduced strong object orientated capabilities.

2

Introduction to PHP

PHP is typically installed as an Apache module, or run by the web server using FastCGI. It includes the
PHP OCI8 extension and is linked with the Oracle Client Libraries, enabling Oracle Database access. When
a user enters the URL of a PHP script hello.php (see step 1 in Figure 1) in their browser, Apache invokes
PHP to processes the file. The PHP code is executed (2), with calls to the database (3). Finally, the HTML
output is returned to the user's browser (4), which formats and displays the page.

The PHP command line interface (CLI) can also be used to run PHP scripts from an operating system shell
window.

3

Figure 1: The four stages of processing a PHP script.

Introduction

4

CHAPTER 2

GETTING STARTED WITH PHP
This Chapter gives you a very brief overview of the PHP language. Basic PHP syntax is simple to learn. It
has familiar loops, tests and assignment constructs.

Creating and Editing PHP Scripts
There are a number of specialized PHP editors available, including Oracle’s JDeveloper which can be
configured with a PHP extension. Many developers still prefer text editors, or editors with modes that
highlight code syntax and aid development. This manual does not assume any particular editor or
debugger is being used.

PHP scripts often have the file extension .php, but sometimes .phtml or .inc are also used. The web
server can be configured to recognize the extension(s) that you choose.

PHP Syntax Overview
PHP scripts are enclosed in <?php and ?> tags. Lines are terminated with a semi-colon:

<?php
echo 'Hello, World!';
?>

Blocks of PHP code and HTML code may be interleaved. The PHP code can also explicitly print HTML
tags:

<?php
echo '<h3>';
echo 'Full Results';
echo '</h3>';
$output = "no results available";
?>
<table border="1">
 <tr>
 <td>
 <?php echo $output ?>
 </td>
 </tr>
</table>

The output when running this script is:

<h3>Full Results</h3><table border="1">
 <tr>
 <td>
 no results available </td>

5

Getting Started With PHP

 </tr>
</table>

A browser would display it as:

PHP strings can be enclosed in single or double quotes:

'A string constant'
"another constant"

Variable names are prefixed with a dollar sign. Things that look like variables inside a double-quoted string
will be expanded:

"A value appears here: $v1"

Strings and variables can also be concatenated using a period.

'Employee ' . $ename . ' is in department ' . $dept

Variables do not need types declared:

$count = 1;
$ename = 'Arnie';

Arrays can have numeric or associative indexes:

$a1[1] = 3.1415;
$a2['PI'] = 3.1415;

Strings and variables can be displayed with an echo or print statement. Formatted output with printf()
is also possible.

echo 'Hello, World!';
echo $v, $x;
print 'Hello, World!';
printf("There is %d %s", $v1, $v2);

Code flow can be controlled with tests and loops. PHP also has a switch statement. The if/elseif/else
statements look like:

if ($sal > 900000) {
 echo 'Salary is way too big';
} elseif ($sal > 500000) {
 echo 'Salary is huge';
} else {
 echo 'Salary might be OK';

6

Figure 2: PHP script output.

PHP Syntax Overview

}

This also shows how blocks of code are enclosed in braces.
A traditional loop is:

for ($i = 0; $i < 10; ++$i) {
 echo $i . "
\n";
}

This prints the numbers 0 to 9, each on a new line. The value of $i is incremented in each iteration. The
loop stops when the test condition evaluates to true. You can also loop with while or do while constructs.

The foreach command is useful to iterate over arrays:

$a3 = array('Aa', 'Bb', 'Cc');
foreach ($a3 as $v) {
 echo $v;
}

This sets $v to each element of the array in turn.
A function may be defined:

function myfunc($p1, $p2) {
 echo $p1, $p2;
 return $p1 + $p2;
}

Functions may have variable numbers of arguments. This function could be called using:

$v3 = myfunc(1, 3);

Function calls may appear earlier than the function definition. Procedures use the same function keyword
but do not have a return statement.

Sub-files can be included in PHP scripts with an include() or require() statement.

include('foo.php');
require('bar.php');

A require() will generate a fatal error if the script is not found. The include_once() and
require_once() statements prevent multiple inclusions of a file.

Comments are either single line:

// a short comment

or multi-line:

/*
 A
 longer
 comment
*/

7

Getting Started With PHP

Running PHP Scripts
PHP scripts can be loaded in a browser, or executed at a command prompt in a terminal window. Because
browsers interpret HTML tags and compress white space including new-lines, script output can differ
between command-line and browser invocation of the same script.

Many aspects of PHP are controlled by settings in the php.ini configuration file. The location of the file
is system specific. Its location, the list of extensions loaded, and the value of all the initialization settings
can be found using the phpinfo() function:

<?php
phpinfo();
?>

Values can be changed by editing php.ini or using the Zend Core for Oracle console, and restarting the web
server. Some values can also be changed within scripts by using the ini_set() function.

To connect to Oracle, some Oracle environment variables need to be set before the web server starts.
This is discussed in the installation chapters of this book.

Running PHP Scripts in a Browser
PHP scripts are commonly run by loading them in a browser:
http://localhost/myphpinfo.php
When a web server is configured to run PHP files through the PHP interpreter, requesting the script in a
browser will cause the PHP code to be executed and all its output to be streamed to the browser.

Running Scripts with Command Line PHP
If your PHP code is in a file, and the PHP executable is in your path, run it with:

$ php myphpinfo.php

Various options to the php executable control its behavior. The -h options gives the help text:

$ php -h

Common options when first using PHP are --ini which displays the location of the php.ini file, and -i
which displays the value of the php.ini settings.

Debugging PHP Scripts
If you are not using a specialized PHP editor, debugging will be an old-fashioned matter of using echo to
print variables and check code flow.

The var_dump() function is useful for debugging because it formats and prints complex variables:

$a2['PI'] = 3.1415;
var_dump($a2);

The output is:

array(1) {

8

Running PHP Scripts

 ["PI"]=>
 float(3.1415)
}

The formatting is apparent when using command-line PHP. In a browser, to prevent white space and new
lines coalescing, you will need to do:

echo '<pre>';
$a2['PI'] = 3.1415;
var_dump($a2);
echo '</pre>';

Some examples in this manual use var_dump() to simplify the code being demonstrated or to show the
type and contents of a variable.

9

Getting Started With PHP

10

CHAPTER 3

PHP ORACLE EXTENSIONS

PHP has several extensions that let applications use Oracle. There are also database abstraction libraries
written in PHP which are popular. Although this book concentrates on the OCI8 extension for PHP, it is
worth knowing the alternatives.

Database access in each extension and abstraction library is fundamentally similar. The differences are
in their support for advanced features and the programming methodology promoted. If you want to make
full use of Oracle's features and want high performance then use OCI8, which is PHP’s main Oracle
extension. If you want database independence, consider using the PHP Data Object (PDO) extension or the
ADOdb abstraction library.

The PHP world can move at a fast pace, so examine your requirements and the latest information
available before starting a project.

PHP Oracle Extensions
The PHP Oracle extensions are written in C and linked into the PHP binary. The extensions are:

● Oracle

● OCI8

● PDO

You can also use the ODBC extension.

Oracle Extension
The extension called “Oracle” was included in PHP 3, 4 and 5.0. It had limited functionality, is no longer in
PHP, and is not maintained. The extension accessed the database using Oracle’s obsolete “OCI7” C
language API. New development using this extension is not recommended.

OCI8 Extension
OCI8 is the recommended extension to use. It is included in PHP 3, 4, and 5. It is also in PHP 6, which is in
the early stage of development. It is open source and maintained by the PHP community. Oracle is a
member of the community looking after OCI8.

There have been major and minor changes to the OCI8 extension in various versions of PHP. It is
recommended to upgrade the default OCI8 code in PHP 4 – PHP 5.2 to the latest version of the extension.

An example script that finds city names from the locations table using OCI8:

Script 1: intro.php

<?php
$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

11

PHP Oracle Extensions

$s = oci_parse($c, 'select city from locations');
oci_execute($s);
while ($res = oci_fetch_array($s, OCI_ASSOC)) {
 echo $res['CITY'] . "
";
}
?>

When invoked in a web browser, it connects as the demonstration user hr of the Oracle Database XE
database running on the local machine. The query is executed and a web page of results is displayed in the
browser:

In PHP 5, some extension function names were standardized. PHP 4 functions like OCILogin() became
oci_connect(), OCIParse() became oci_parse() and so on. The old names still exist as aliases, so
PHP 4 scripts do not need to be changed. A table showing old and new names appears in Appendix C.

The name “OCI8” is also the name for Oracle’s Call Interface API used by C programs such as the PHP
OCI8 extension. All unqualified references to OCI8 in this book refer to the PHP extension.

PDO Extension
PHP Data Objects (PDO) is a data abstraction extension that provides PHP functions for accessing
databases using a common core of database independent methods. Each database has its own driver, which
may also support vendor specific functionality. PDO_OCI provides the Oracle functionality for PDO. The
PDO extension and PDO_OCI driver are open source and included in PHP 5.1 onwards.

An example script that finds city names from the locations table using PDO_OCI is:

Script 1: connectpdo.php

<?php
$dbh = new PDO('oci:dbname=localhost/XE', 'hr', 'hrpwd');
$s = $dbh->prepare("select city from locations");

12

Figure 3: PHP Output in a web browser.

PHP Oracle Extensions

$s->execute();
while ($r = $s->fetch(PDO::FETCH_ASSOC)) {
 echo $r['CITY'] . "
";
}
?>

The output is the same as the OCI8 example in Figure 3.
The Data Source Name (DSN) prefix oci: must be lowercase. The value of dbname is the Oracle

connection identifier for your database.

PHP Database Abstraction Libraries
Like PDO, the abstraction libraries allow simple PHP applications to work with different brands of
database.

There are three main database abstraction libraries for PHP. They are written in PHP and, when
configured for Oracle, they use functionality provided by the OCI8 extension. The abstraction libraries are:

● ADOdb

● PEAR DB

● PEAR MDB2

Other abstractions such as Creole have dedicated fan-base, but the support for Oracle features varies.
You can freely download and use the PHP code for these libraries.

ADOdb
The popular ADOdb library is available from http://adodb.sourceforge.net. There is an optional C
extension plug-in if you need extra performance.

An example script that finds city names from the locations table using ADOdb:

Script 2: connectadodb.php

<?php
require_once("adodb.inc.php");
$db = ADONewConnection("oci8");
$db->Connect("localhost/XE", "hr", "hrpwd");
$s = $db->Execute("select city from locations");
while ($r = $s->FetchRow()) {
 echo $r['CITY'] . "
";
}
?>

There is an Advanced Oracle Tutorial at:
http://phplens.com/lens/adodb/docs-oracle.htm

13

PHP Oracle Extensions

PEAR DB
The PHP Extension and Application Repository (PEAR) contains many useful packages that extend PHP’s
functionality. PEAR DB is a package for database abstraction. It is available from
http://pear.php.net/package/DB. PEAR DB has been superseded by PEAR MDB2 but is still widely
used.

PEAR MDB2
The PEAR MDB2 package is available from http://pear.php.net/package/MDB2. It is a library
aiming to combine the best of PEAR DB and the PHP Metabase abstraction packages.

An example script that finds city names from the locations table using MDB2:

Script 3: connectpear.php

<?php
require("MDB2.php");
$mdb2 = MDB2::connect('oci8://hr:hrpwd@//localhost/XE');
$res = $mdb2->query("select city from locations");
while ($row = $res->fetchRow(MDB2_FETCHMODE_ASSOC)) {
 echo $row['city'] . "</br>";
}
?>

Getting the OCI8 Extension
The OCI8 extension is included in various PHP bundles. There are three main distribution channels: the
PHP releases, Zend Core for Oracle, and the PHP Extension Community Library (PECL) site which
contains PHP extensions as individual downloads.

The OCI8 extension is available in several forms because of the differing needs of the community. Many
PHP users install the full PHP source and do their own custom configuration. If they need a specific bug fix
they use PECL or PHP’s latest development source code to get it. Windows users commonly install PHP's
pre-built Window binaries. At time of writing, the site http://pecl4win.php.net/ that was useful for
obtaining Windows PHP fixes is no longer being maintained. A new site at http://windows.php.net/
is under construction.

If you do not want to compile PHP, or this is your first time with PHP and Oracle, or you want a
supported stack, install Zend Core for Oracle.

Table 1 shows where OCI8 can be downloaded.

Table 1: OCI8 Availability.

Bundle Containing OCI8 Location and Current Release

PHP Source Code http://www.php.net/downloads.php
php-5.2.7.tar.bz2

Compiles and runs on many platforms

14

Getting the OCI8 Extension

Bundle Containing OCI8 Location and Current Release

PHP Windows Binaries http://www.php.net/downloads.php
php-5.2.7-Win32.zip

PECL Source Code http://pecl.php.net/package/oci8
oci8-1.3.4.tgz

Used to add or upgrade OCI8 for an existing PHP installation

Zend Core for Oracle 2.5 http://www.oracle.com/technology/tech/php/zendcore/
ZendCoreForOracle-v2.5.0-Linux-x86.tar.gz

ZendCoreforOracle-v.2.5.0-Windows-x86.exe

Other platforms are also available

OCI8 and Oracle Installation Options
To provide Oracle database access, the PHP binary is linked with Oracle client libraries. These libraries
provide underlying connectivity to the database, which may be local or remote on your network.

Oracle has cross-version compatibility. For example, if PHP OCI8 is linked with Oracle Database 10g client
libraries, then PHP applications can connect to Oracle Database 8i , 9i, 10g or 11g. If OCI8 is linked with
Oracle Database 11g libraries, then PHP can connect to Oracle Database 9iR2 onwards.

If the database is installed on the same machine as the web server and PHP, then PHP can be linked
with Oracle libraries included in the database software. If the database is installed on another machine,
then link PHP with the small, free Oracle Instant Client libraries.

15

Figure 4: PHP links with Oracle client libraries.

PHP Oracle Extensions

Full OCI8 functionality may not be available unless the Oracle client libraries and database server are
the latest version.

Table 2 shows the compatibility of the Oracle client libraries with the current OCI8 extension and PHP.
Older versions of PHP have different compatibility requirements.

Table 2: OCI8 and Oracle Compatibility Matrix.

Software Bundle PHP Version OCI8 Version
Included

Oracle Client Libraries Usable
with OCI8

PHP Release Source Code Current release is 5.2.7 OCI8 1.2.5 8i, 9i, 10g, 11g

PHP Release Windows
Binaries

Current release is 5.2.7 OCI8 1.2.5 10g, 11g

PECL OCI8 Source Code Builds with PHP 4.3.9
onwards

Latest release is
OCI8 1.3.4

9iR2, 10g, 11g

Zend Core for Oracle 2.5 Includes PHP 5.2.5 OCI8 1.2.3 Inbuilt Oracle Database 10g client

If OCI8 is being used with PHP 4, 5.0, 5.1 or 5.2, consider replacing the default OCI8 code with the latest
version from PECL to get improved stability, behavior and performance optimizations. This is important
for PHP 4 and 5.0 because their versions of OCI8 are notoriously unstable. Instructions for updating OCI8
are shown later in this book.

Getting the PDO Extension
The PDO_OCI driver for PDO is included with PHP source code and, like OCI8, is also available on PECL.

The PHP community has let the PDO project languish and Oracle recommends using OCI8 instead
whenever possible because of its better feature set, performance and reliability. Only a few minor changes
have been made to PDO_OCI in PHP releases since its introduction. The version of PDO_OCI on PECL has
not been updated with these fixes and is still at version 1.0.

PDO_OCI is independent of OCI8 and has no code in common with it. The extensions can be enabled
separately or at the same time.

Table 3 shows the compatibility of the PDO_OCI driver with PHP and Oracle.

Table 3: PDO_OCI Availability and Compatibility.

Bundle Containing
PDO_OCI

Location and Current Release Oracle Client Libraries
Usable with PDO_OCI

PHP Source Code http://www.php.net/downloads.php
php-5.2.7.tar.bz2

Compiles and runs on many platforms

8i, 9i, 10g, 11g

PHP Windows Binaries http://www.php.net/downloads.php
php-5.2.7-Win32.zip

8i, 9i, 10g, 11g

16

Getting the PDO Extension

Bundle Containing
PDO_OCI

Location and Current Release Oracle Client Libraries
Usable with PDO_OCI

PECL Source Code http://pecl.php.net/package/PDO_OCI
PDO_OCI-1.0.tgz

8i, 9i, 10g (no 11g support)

Zend Core for Oracle 2.5 http://www.oracle.com/technology/tech/
php/zendcore/
ZendCoreForOracle-v2.5.0-Linux-x86.tar.gz

ZendCoreforOracle-v.2.5.0-Windows-x86.exe

Other platforms are also available

Inbuilt Oracle Database 10g
client

Zend Core for Oracle
Zend Core for Oracle (ZCO) is a pre-built release of PHP from Zend that comes enabled with the OCI8 and
PDO_OCI extensions. It is available for several platforms, has a simple installer, and includes a convenient
browser-based management console for configuration and getting updates. It comes with Oracle Instant
Client 10g and includes an optional Apache web server. ZCO can connect to local and remote Oracle
databases.

Although ZCO 2.5 includes PHP 5.2.5, Zend decided to use a tested OCI8 extension from an older PHP
release, so not all recent bug fixes are included.

ZCO is free to download and use. A support package is available from Zend.

The PHP Release Cycle
PHP’s source code is under continual development in a source code control system viewable at
http://cvs.php.net/. (Migration from CVS to SVN is planned). This is the only place bug fixes are
merged. The code is open source and anyone can read the code in CVS or seek approval to contribute.

The code in CVS is used to create the various PHP distributions:

● Two-hourly snap-shots are created containing a complete set of all PHP’s source in CVS at the time the
snapshot was created. You can update your PHP environment by getting this source code and
recompiling, or by downloading the Windows binaries. The snapshots may be relatively unstable
because the code is in flux. The snapshots are located at http://snaps.php.net/.

● After several months of development the PHP release manager will release a new stable version of
PHP. It uses the most current CVS code at the time of release.

● PECL OCI8 source code snapshots are taken from CVS at infrequent intervals. Recently, snapshots
have been made concurrently at the time of a PHP release (when OCI8 has changed).

● Zend Core for Oracle also takes snapshots of PHP from CVS.

● Various operating systems bundle the version of PHP current at the time the OS is released and
provide critical patch updates.

17

PHP Oracle Extensions

The schedules of PHP releases, the PECL source snapshots, and Zend Core for Oracle are not fully
synchronized.

As a result of a recent PHP version numbering overhaul, the OCI8 extension included in the PHP
source code is now labeled with the same version number as the equivalent PECL release.

Table 4 shows the major features in each revision of PECL OCI8.

Table 4: Major Revisions of OCI8.

PECL OCI8 Version Main Features

OCI8 1.0 First PECL release. Based on PHP 4.3 OCI8 code.

OCI8 1.1 Beta releases that became OCI8 1.2.

OCI8 1.2 A major refactoring of the extension for PHP 5.1. It greatly improved stability,
added control over persistent connections, and introduced performance features
such as the ability to do statement caching and a new array bind function.
Available in PHP 5.1 – 5.2.

OCI8 1.3 Refactored connection management gives better handling of restarted databases
and adds support for Oracle's external authentication. Also some of Oracle recent
scalability and high availability features can be now be used. These features are
discussed in a later chapter. OCI8 1.3 will be included in PHP 5.3.

18

CHAPTER 4

INSTALLING ORACLE DATABASE 10G
EXPRESS EDITION

This Chapter contains an overview of, and installation instructions for, Oracle Database 10g Express
Edition (Oracle Database XE). The installation instructions are given for Linux, Windows, Debian, Ubuntu
and Kubuntu.

Oracle Database Editions
There are a number of editions of the Oracle database, each with different features, licensing options and
costs. The editions are:

● Express Edition

● Standard Edition One

● Standard Edition

● Enterprise Edition

All the editions are built using the same code base. That is, they all have the same source code, but different
features are implemented in each edition. Enterprise Edition has all the bells and whistles, whereas the
Express Edition has a limited feature set, but still has all the reliability and performance of the Enterprise
Edition.

You could start off with the Express Edition, and, as needed, move up to another edition as your
scalability and support requirements change. You could do this without changing any of your underlying
table structure or code. Just change the Oracle software and you’re away.

There is a comprehensive list of the features for each Oracle edition at
http://www.oracle.com/database/product_editions.html.

This book discusses working with Oracle Database XE. This is the free edition. Free to download. Free
to develop against. Free to distribute with your applications. Yes, that is free, free, free!

Oracle Database XE
Oracle Database XE is available on 32-bit Windows and Linux platforms. Oracle Database XE is a good
choice for development of PHP applications that require a free, small footprint database.

Oracle Database XE is available on the Oracle Technology Network (http://otn.oracle.com/xe)
for the following operating systems:

● Windows 2000 Service Pack 4 or later

● Windows Server 2003

19

Installing Oracle Database 10g Express Edition

● Windows XP Professional Service Pack 1 or later

● Oracle Enterprise Linux 4 and 5

● Red Hat Enterprise Linux RHEL 3, 4, and 5

● Suse SLES-9

● Fedora Core 4

● Red Flag DC Server 5.0/MIRACLE LINUX V4.0/Haansoft Linux 2006 Server (Asianux 2.0 Inside)

● Debian 3.1

The following libraries are required for the Linux-based operating systems:

● glibc release 2.3.2

● libaio release 0.3.96

There are some limitations with Oracle Database XE:

● 4GB of data

● Single database instance

● Single CPU used, even if multiple CPUs exist

● 1GB RAM used, even if more RAM is installed

Oracle Database XE has a browser-based management interface, Oracle Application Express. Support for
Oracle Database XE is through an Oracle Technology Network (http://otn.oracle.com/) discussion
forum, which is populated by peers and product experts. You cannot buy support from Oracle for Oracle
Database XE.

If you need a fully supported version for the Oracle database, you should consider Oracle Standard
Edition or Enterprise Edition. You can download all the editions of the Oracle Database from the Oracle
Technology Network, and use these for application development and testing, but when you go production,
you will need to pay Oracle for the license costs.

Installing Oracle Database XE on Linux
If you do not have a version of libaio over release 0.3.96, you need to install this library before you can
install Oracle Database XE. To install Oracle Database XE:
1. Download the Oracle Database XE from http://otn.oracle.com/xe.

2. Log in or su as root:

su
Password:

3. Install the RPM:

rpm -ivh oracle-xe-univ-10.2.0.1-1.0.i386.rpm

20

Installing Oracle Database XE on Linux

Oracle Database XE installs.
4. Configure the database

/etc/init.d/oracle-xe configure

5. Accept the default ports of 8080 for Application Express, and 1521 for the Database Listener.

6. Enter and confirm the password for the default users.

7. Enter Y or N for whether you want the database to start automatically on reboot. The database and
database listener are configured and started.

If you use the Oracle Unbreakable Linux Network and have the Oracle Software channel enabled, you can
install Oracle DatabaseXE with:

up2date oracle-xe

After this download completes, follow the configuration step 4 onwards.

Installing Oracle Database XE on Debian, Ubuntu, and Kubuntu
There is an Advanced Package Tool (apt-get) repository available on the Oracle Open Source web site for
Oracle Database XE. To include this repository, add the following to the file /etc/apt/sources.list:

deb http://oss.oracle.com/debian unstable main non-free

libaio and bc are included in the repository, and will be installed from the repository if you do not already
have them installed.

If you download Oracle Database XE from the Oracle Technology Network
(http://otn.oracle.com/xe), you need to make sure that you have already installed the libaio and bc
packages. If you are using Ubuntu or Kubuntu, the bc package is installed by default on the desktop
version, but not on the server version.

To install Oracle Database XE on Debian, Ubuntu and Kubuntu, follow these steps:
1. Log in or su as root

su
Password:

2. Install Oracle Database XE

apt-get update
apt-get install oracle-xe

If you have not added the apt-get repository, you can download Oracle Database XE from
http://otn.oracle.com/xe, and run the following command to begin the install:

dpkg -i downloads/oracle-xe-universal_10.2.0.1-1.0_i386.deb

Oracle Database XE installs.
3. Configure the database

21

Installing Oracle Database 10g Express Edition

/etc/init.d/oracle-xe configure

4. Accept the default ports of 8080 for Application Express, and 1521 for the Database Listener.

5. Enter and confirm the password for the default users.

6. Enter Y or N for whether you want the database to start automatically on reboot. The database and
database listener are configured and started.

Installing Oracle Database XE on Windows
To install Oracle Database XE on Windows, follow these steps:
1. Log on to Windows as a user with Administrative privileges.

2. If an ORACLE_HOME environment variable has been set, delete it using the Control Panel > System
dialog.

3. Download the Oracle Database XE from http://otn.oracle.com/xe.

4. Double click on the OracleXEUniv.exe file.

5. In the Oracle Database XE - Install Wizard welcome window, click Next.

6. In the License Agreement window, select I accept and click Next.

7. In the Choose Destination Location window, either accept the default or click Browse to select a
different installation directory. Click Next.

22

Figure 5: Oracle Database XE install welcome dialog.

Installing Oracle Database XE on Windows

8. Oracle Database XE requires a number of ports and selects a number of default ports. If these ports are
already being used, you are prompted to enter another port number.

9. In the Specify Database Passwords window, enter and confirm the password to use for the sys and
system database accounts. Click Next.

10. In the Summary window, review the installation settings. Click Install.

23

Figure 7: Oracle Database XE database password dialog.

Figure 6: Oracle Database XE install location dialog.

Installing Oracle Database 10g Express Edition

11. In the InstallShield Wizard Complete window, click Launch the Database homepage to display the
Database Home Page. Click Finish.

Testing the Oracle Database XE Installation
To test the installation of Oracle Database XE:
1. If you do not already have the Database homepage displayed in your web browser, open a web

browser and enter:
http://127.0.0.1:8080/apex

2. The Database homepage is displayed.

24

Figure 8: Oracle Database XE install summary dialog.

Figure 9: Oracle Database XE home page login screen.

Testing the Oracle Database XE Installation

3. Log in as user system with the password you entered during the installation. You should now be
logged into the Oracle Database homepage.

Configuring Oracle Database XE
There are a number of environment settings and configuration options you can set for Oracle Database XE.
The more commonly used settings are discussed here.

Setting the Oracle Database XE Environment Variables on Linux
On Linux platforms a script is provided to set the Oracle environment variables after you log in. The script
for Bourne, Bash and Korn shells:

/usr/lib/oracle/xe/app/oracle/product/10.2.0/server/bin/oracle_env.sh

For C and tcsh shells, use oracle_env.csh. Run the appropriate script for your shell to set your Oracle
Database XE environment variables. You can also add this script to your login profile to have the
environment variables set up automatically when you log in.

To add the script to your Bourne, Bash or Korn shell, add the following lines to your .bash_profile or
.bashrc file:

. /usr/lib/oracle/xe/app/oracle/product/10.2.0/server/bin/oracle_env.sh

(Note the space after the period). To add the script to your login profile for C and tcsh shells, add the
following lines to your .login or .cshrc file:

source /usr/lib/oracle/xe/app/oracle/product/10.2.0/server/bin/oracle_env.csh

25

Figure 10: Oracle Database XE home page.

Installing Oracle Database 10g Express Edition

Enabling Database Startup and Shutdown from Menus on Linux
You may not be able to start and stop the database using the menu on Linux platforms. This is because
your user is not a member of the operating system dba group. To enable this functionality, add the user
name to the dba group using the System Settings.

Starting and Stopping the Listener and Database
The database listener is an Oracle Net program that listens for and responds to requests to the database.
The database listener must be running to handle these requests. The database is another process that runs
in memory, and needs to be started before Oracle Net can handle connection requests to it.

After installing Oracle Database XE, the listener and database should already be running, and you may
have requested during the installation that the listener and database should be started when the operating
system starts up. If you need to manually start or stop the database listener, the options and commands for
this are listed below.

To start the database, you must log in as a user who is a member of the operating system dba user
group. This applies to all the methods of starting and stopping the database.

Starting and Stopping the Listener and Database on Linux
To start up the listener and database on Linux platforms using the desktop, do one of the following:

● On Linux with Gnome: Select Applications > Oracle Database 10g Express Edition > Start Database.

● On Linux with KDE: Select K Menu > Oracle Database 10g Express Edition > Start Database.

To shut down the database on Linux platforms using the desktop, do one of the following:

● On Linux with Gnome: Select Applications > Oracle Database 10g Express Edition > Stop Database.

● On Linux with KDE: Select K Menu > Oracle Database 10g Express Edition > Stop Database.

To start the listener and database on Linux platforms using the command line, run the following command
in your shell:

/etc/init.d/oracle-xe restart

To stop the listener and database on Linux platforms using the command line, run the following command
in your shell:

/etc/init.d/oracle-xe stop

You can also use the Services dialog from the Desktop to start and stop the listener and database.
To start the listener and database from the Desktop Services dialog, select Applications > System Settings
> Server Settings > Services. Select oracle-xe from the list of services and select Start.

To stop the listener and database from the Desktop Services dialog, select Applications > System
Settings > Server Settings > Services. Select oracle-xe from the list of services and select Stop.

26

Configuring Oracle Database XE

Starting and Stopping the Listener and Database on Windows
To start the listener and database on Windows platforms, select Start > Oracle Database 10g Express
Edition > Start Database. A Window is displayed showing the status of the listener and database startup
process.

Type exit and press Enter to close the Window. The listener and database are now started.
To stop the listener and database on Windows platforms, select Start > Oracle Database 10g Express

Edition > Stop Database. A Window is displayed showing the status of the listener and database
shutdown process.

Type exit and press Enter to close the Window. The listener and database are now stopped. You can also
start and stop the listener separately on Windows platforms using the Services dialog.

To start the listener on Windows platforms, open the Services dialog using Start > Settings > Control
Panel > Administrative Tools > Services, and select the OracleXETNSListener service. Right click on the
Listener service, and select Start.

27

Figure 11: Start Database dialog.

Figure 12: Stop Database dialog.

Installing Oracle Database 10g Express Edition

To stop the listener on Windows platforms, open the Services dialog using Start > Settings > Control
Panel > Administrative Tools > Services, and select the OracleXETNSListener service. Right click on the
Listener service, and select Stop.

You can also start and stop the database separately on Windows platforms using the Services dialog.
To start the database using the Services dialog on Windows platforms, open the Services dialog using

Start > Settings > Control Panel > Administrative Tools > Services, and select the OracleServiceXE
service. Right click on the database service, and select Start.

To stop the database using the Services dialog on Windows platforms, open the Services dialog using
Start > Settings > Control Panel > Administrative Tools > Services, and select the OracleServiceXE
service. Right click on the database service, and select Stop.

Starting and Stopping the Listener and Database Using SQL*Plus
You can also use the command line shell and SQL*Plus command line to start and stop the database. Make
sure that you are logged in as a privileged user and have your operating system environment set up
correctly as discussed in an earlier section of this chapter.

On Windows, to control the listener, use the Services dialog as discussed above.
To start up the listener on Linux, open a terminal window and run the following command:

lsnrctl start

Oracle Net starts the listener and it is ready to take database requests. If you want to shut down the listener
manually, you use the similar command from the operating system command prompt:

lsnrctl stop

After starting the listener, you also need to start the database using SQL*Plus. For this, you must log in as a
database user with the sysdba role. This is the sys user in default installations, or you can use operating
system authentication if you are on the local machine in the operating system dba group. To start up a
database using SQL*Plus, enter the following at the command line prompt:

sqlplus /nolog

The SQL*Plus command line starts. You can also start SQL*Plus from the Applications > Oracle Database
10g Express Edition > Run SQL Command Line on Linux, or Start > Programs > Oracle Database 10g
Express Edition > Run SQL Command Line on Windows.

At the SQL*Plus command line prompt, enter the following commands to connect to the database and
start it up:

SQL> connect / as sysdba
SQL> startup
The database is started.

If you start the database before starting the Oracle Net listener, it can take a short while before the
database registers with the listener. Until it this happens, connections to the database will fail.

To shut down the database, you need to log in as sysdba, and issue the SHUTDOWN IMMEDIATE
command. Log into SQL*Plus as before and issue the following command:

28

Configuring Oracle Database XE

SQL> connect / as sysdba
SQL> shutdown immediate
The SQL*Plus User’s Guide and Reference gives you the full syntax for starting up and shutting down the
database if you need more help.

Enabling Remote Client Connection
The Oracle Database XE home page is only available from the local machine, not remotely. If you want to
enable access from a remote client, you should be aware that HTTPS cannot be used (only HTTP), so your
login credentials are sent in clear text, and are not encrypted, so if you don’t need to set this up, it is more
secure to leave it as the default setup.

To enable connection to the Oracle Database XE home page from remote machines, follow these steps:
1. Open a web browser and load the Oracle Database XE home page:

http://127.0.0.1:8080/apex
2. Log in as the system user.

3. Select Administration from the home page.

4. Select Manage HTTP Access from the Tasks option.

5. Check the Available from local server and remote clients radio button. Click Apply Changes.
You can also use SQL*Plus command line to enable access from remote clients. To use SQL*Plus command
line to change this setting, log into SQL*Plus as system, and run the following command:

SQL> EXEC DBMS_XDB.SETLISTENERLOCALACCESS(FALSE);

29

Installing Oracle Database 10g Express Edition

30

CHAPTER 5

USING ORACLE DATABASE

This Chapter contains an overview of the Oracle Application Express, SQL*Plus and Oracle SQL Developer
applications that you can use to perform database development and administration.

Oracle Application Express
Oracle Application Express is a browser-based application builder for the Oracle database. It is installed
with Oracle Database XE and is also available for download from Oracle Technology Network
(http://otn.oracle.com) as a standalone product for other versions and editions of the database. It
also contains a database development tool, not covered in this book. The release of Oracle Application
Express installed with Oracle Database XE has an additional module for performing database
administration, monitoring and maintenance.

Logging In To Oracle Application Express
To start and log in to Oracle Application Express:
1. Open a web browser and enter the URL:

http://127.0.0.1:8080/apex
2. The Oracle Application Express login screen is displayed.

3. Log in as system. The password you enter here is the password you entered when you installed Oracle.
There is no default system password set by the Oracle Installer.

31

Figure 13: Oracle Application Express login screen.

Using Oracle Database

Unlocking the HR User
Many of the examples in this book, and other Oracle books use the hr user, which is automatically installed
and configured during an Oracle database installation. You may want to unlock this user now so that many
of the examples in this book work correctly.

To unlock the hr user:
1. Log in to Oracle Application Express as shown in the previous section.

2. Select Administration > Database Users > Manage Users.

32

Figure 14: Oracle Application Express interface.

Figure 15: Manage Database Users menu.

Oracle Application Express

3. Select the HR icon.

4. To unlock the hr user, enter a password in the Password and Confirm Password fields. The examples
in later chapters use the password hrpwd. Change Account Status to Unlocked, and click the Alter
User button.

The hr account is now unlocked.

Creating Database Objects
The Oracle Application Express Object Browser can be used to create or edit the following objects:

● Table

● View

● Index

33

Figure 16: Manage Database Users screen.

Figure 17: User screen.

Using Oracle Database

● Sequence

● Collection Type

● Package

● Procedure

● Function

● Trigger

● Database Link

● Materialized View

● Synonym

Oracle Application Express uses wizards to guide you through creating these database objects. The
following example covers creating a table, but you will see that the interface is wizard-based and creating
and editing different objects can all be performed through the Object Browser.

To create a new table:
1. On the Database home page, click the Object Browser icon. The Object Browser page is displayed.

34

Figure 18: Oracle Application Express create object screen.

Oracle Application Express

2. Click Create.

3. From the list of object types, select Table.

4. Enter a table name in the Table Name field, and details for each column. Click Next.

5. Define the primary key for this table (optional).

6. Add foreign keys (optional).

35

Figure 19: Oracle Application Express create table object
screen.

Figure 20: Oracle Application Express table definition
screen.

Using Oracle Database

7. Add a constraint (optional).

8. Click Finish. To view the SQL used to create the table, click SQL Syntax.

The SQL that is generated to create the table is:

CREATE table "MYTABLE" (
 "FIRST_NAME" CHAR(100) NOT NULL,
 "SECOND_NAME" CHAR(100) NOT NULL,
 "SALARY" NUMBER,
 "BIRTHDATE" DATE
)
/

You could also run this command in SQL*Plus command line to create the table.
9. Click Create. The table is created and a description of the table is displayed.

36

Figure 21: Oracle Application Express confirm create table
screen.

Figure 22: Oracle Application Express table created
confirmation screen.

Oracle Application Express

Working with SQL Scripts
The SQL Console enables you to:

● Write SQL and PL/SQL

● Load and save SQL scripts

● Graphically build SQL

The following example guides you through creating a SQL script. This example uses the Query Builder to
graphically create a SQL script to query data. To access the tables used, log in as the hr user. To access
Query Builder:
1. On the Database home page, click the SQL icon.

2. Click the Query Builder icon.

3. Select objects from the Object Selection pane. When you click on the object name, it is displayed in the
Design pane.

37

Figure 23: Oracle Application Express SQL options screen.

Using Oracle Database

4. Select columns from the objects in the Design pane to select which columns to include in the query
results.

5. Establish relationships between objects by clicking on the right-hand column of each table (optional).

6. Create query conditions (optional).

7. Click Run to execute the query and view the results.

8. You can save your query using the Save button.

Creating a PL/SQL Procedure
To enter and run PL/SQL code in the SQL Commands page:
1. On the Database home page, click the SQL icon to display the SQL page.

2. Click the SQL Commands icon to display the SQL Commands page.

38

Figure 25: Oracle Application Express SQL query results
screen.

Figure 24: Oracle Application Express SQL query builder
screen.

Oracle Application Express

3. On the SQL Commands page, enter some PL/SQL code. Here is some PL/SQL code to try if you aren’t
familiar with PL/SQL. This procedure, emp_stat, averages the salary for departments in the hr
schema, and is encapsulated in a PL/SQL package called emp_sal. You need to enter each block
separately, and click Run.

create or replace package emp_sal as
procedure emp_stat;
end emp_sal;
/

Click Run to execute the PL/SQL. Then enter the following code:

create or replace package body emp_sal as
Procedure emp_stat is
TYPE EmpStatTyp is record (Dept_name varchar2(20),
Dept_avg number);
EmpStatVar EmpStatTyp;
BEGIN
DBMS_OUTPUT.PUT_LINE('Department Avg Salary');
DBMS_OUTPUT.PUT_LINE('--------------- -----------');
For EmpStatVar in (select round(avg(e.salary),2)
 a,d.department_name b
 from departments d, employees e
 where d.department_id=e.department_id
 group by d.department_name)
LOOP
DBMS_OUTPUT.PUT_LINE(RPAD(EmpStatVar.b,16,' ')||
TO_CHAR(EmpStatVar.a,'999,999,999.99'));
END LOOP;

END;

39

Figure 26: Oracle Application Express PL/SQL and SQL
command screen.

Using Oracle Database

end emp_sal;

Click Run. The PL/SQL code is executed.
4. You can execute the stored procedure by entering the following PL/SQL code and clicking Run.

begin
 emp_sal.emp_stat;
end;

5. If you want to save the PL/SQL code for future use, click Save.

Creating a Database User
The Administration console is used to manage database:

● Storage

● Memory

● Users

● Activity of sessions and operations

The installation process creates an account named system. This account is considered an administrator
account because it has DBA privileges (SYSDBA). To perform database administration such as creating new
users, log into Oracle Application Express as the system user.

To create a database user:
1. On the Database home page, click the Administration icon. Click the Database Users icon.

40

Figure 27: Oracle Application Express Administration
screen.

Oracle Application Express

2. On the Manage Database Users page, click Create. The Create Database User page is displayed.

3. Enter user information into text fields:

4. In the Username field, enter a new username.

5. In the Password and Confirm Password fields, enter a password.

6. Grant all create object system privileges by clicking Check All at the lower right-hand corner of the
User Privileges box.

41

Figure 29: Oracle Application Express Create Database
User screen.

Figure 28: Oracle Application Express Manage Database
Users screen.

Using Oracle Database

7. The DBA role is by default not selected. The DBA privilege, gives the user the ability to create schema
objects in other users' schemas, and to create other users.

8. Click Create. The Manage Database Users page displays a confirmation that the user was created.

Monitoring Database Sessions
You can use the Oracle Database XE graphical user interface to monitor the current database sessions. This
enables you to determine the users who are currently logged in to the database and what applications they
are running.

You can also use the Oracle Database XE graphical user interface to kill a session—to cause it to be
disconnected and its resources to be relinquished.

When you view sessions, you can view:

● All sessions

● Active sessions only

● Sessions that match a search string

You should be logged in as the system user to perform any database administration. To view the current
sessions:

42

Figure 30: Oracle Application Express Manage Database
Users screen.

Oracle Application Express

1. On the Database home page, click the Administration icon. Click Monitor.

2. On the Database Monitor page, click Sessions.

43

Figure 31: Oracle Application Express Administration
screen.

Figure 32: Oracle Application Express Administration
Monitor screen.

Using Oracle Database

3. The Sessions page is displayed and shows the current active sessions.

4. (Optional) In the Status list, select All, and click Go. The page displays all sessions, including idle
sessions. (An example of an idle session is a SQL*Plus command line session that is not currently
running a command.)

5. (Optional) Narrow down the sessions list by entering search text into the Search field and clicking Go.
A session is shown if any of the following fields contain the search text: SID, Database User, Machine,
OS User, Client Information, Client Identifier, and Module.

6. (Optional) Click any of the hyperlinks above the Search field to view the following information for all
sessions: Locks, Waits, Input/Output (I/O), running SQL statements, and open cursors.

7. (Optional) Under the SID column, click a session ID to view the Session Details page for that session.
The Session Details page enables you to kill the session.

Database Backup and Recovery
Backing up and restoring Oracle Database XE is based on protecting the physical files that make up the
database: the datafiles, the control file, the server parameter file (SPFILE), and, if in ARCHIVELOG mode,
the redo log files.

In Oracle Database XE, database backup and recovery is handled by Recovery Manager (RMAN).
Oracle Database XE includes backup and restore scripts that you access using menu on your desktop.
These scripts perform a full backup and restore of the entire database, and store backup files in the flash
recovery area.

Oracle Database XE implements a backup retention policy that dictates that two complete backups of
the database must be retained. In ARCHIVELOG mode, all archived logs required for media recovery from
either backup are also retained. The database automatically manages backups and archived logs in the
flash recovery area, and deletes obsolete backups and archived logs at the end of each backup job.

The backup script performs online backups of databases in ARCHIVELOG mode and offline backups
of databases in NOARCHIVELOG mode. Online backups are backups that can run while the database is
running. Offline backups are backups that run when the database is shut down.

The restore script restores the database differently depending on whether log archiving is on or off.

44

Figure 33: Oracle Application Express Sessions screen.

Oracle Application Express

Log archiving on (ARCHIVELOG mode) restores the backed up database files, and then uses the online
and archived redo log files to recover the database to the state it was in before the software or media failure
occurred. All committed transactions that took place after the last backup are recovered, and any
uncommitted transactions that were under way when the failure took place are rolled back (using undo
data from the restored undo tablespace).

Log archiving off (NOARCHIVELOG mode) restores the database to its state at the last backup. Any
transactions that took place after the last backup are lost.

Backing Up The Database
To back up the database:
1. Log in to the Oracle Database XE host computer as a user who is a member of the dba user group.

2. Do one of the following:

● On Linux with Gnome, select Applications > Oracle Database 10g Express Edition > Backup
Database.

● On Linux with KDE, select K Menu > Oracle Database 10g Express Edition > Backup Database.

● On Windows, select Start > Programs > Oracle Database 10g Express Edition > Backup
Database.

3. A console window opens so that you can interact with the backup script. If running in ARCHIVELOG
mode, the script displays the following output:

If prompted, answer y to confirm the database shutdown and begin the backup. After the backup
is complete, the script displays the following output:

45

Figure 34: Oracle Application Express backup dialog.

Using Oracle Database

4. Press any key to close the Backup Database window.
Logs containing the output from the backups are stored in the following locations:

$ORACLE_HOME/oxe_backup_current.log
$ORACLE_HOME/oxe_backup_previous.log

Restoring the Database
To restore a database from a backup:
1. Log in to the Oracle Database XE host computer as a user who is a member of the dba user group.

2. Do one of the following:

● On Linux with Gnome, select Applications > Oracle Database 10g Express Edition > Restore
Database.

● On Linux with KDE, select K Menu > Oracle Database 10g Express Edition > Restore Database.

● On Windows, select Start > Programs > Oracle Database 10g Express Edition > Restore
Database.

3. A console window opens so that you can interact with the restore script. The script displays the
following output:

46

Figure 35: Oracle Application Express backup successful message.

Oracle Application Express

4. Answer y to confirm the database shutdown and begin the restore. After the restore is complete, the
script displays the following output:

5. Press any key to close the Restore Database window.
A log containing the output from the restore is stored in:

$ORACLE_HOME/oxe_restore.log

Oracle SQL*Plus
SQL*Plus is Oracle's traditional command line tool. It is available whenever the database is installed. Its
command set is limited but it allows ad-hoc queries, scripting and fundamental database administration.
Many books, including this one, use SQL*Plus to show SQL examples. For easy development, you may
prefer to use SQL Developer, which is described in the next section.

47

Figure 37: Oracle Application Express restore successful message.

Figure 36: Oracle Application Express restore dialog.

Using Oracle Database

Starting SQL*Plus
Oracle Database XE sets up a menu option to run SQL*Plus. However, in general, if you want to run
SQL*Plus from a terminal window, the sqlplus executable must be in your PATH and several environment
variables need to be set explicitly. These are pre-set in the registry on Windows.

On Linux, for Oracle Database XE, set the environment with:

$. /usr/lib/oracle/xe/app/oracle/product/10.2.0/server/bin/oracle_env.sh

Note the space after the period.
On other editions of the Oracle database, the /usr/local/bin/oraenv or /usr/local/bin/coraenv (for users of C-

shell) scripts set the environment. In the Bash shell, use:

$. /usr/local/bin/oraenv
ORACLE_SID = [] ?

You will be prompted for the system identifier ("SID") of the database on this machine that you intend to
connect to. The available SIDs can be seen in /etc/oratab. Type the desired SID and press enter.

If you are running SQL*Plus on a machine remote from the database server, you need to manually set
the environment.

Once the environment is set, SQL*Plus can be started with the sqlplus command:

$ sqlplus
SQL*Plus: Release 10.2.0.1.0 - Production on Thu Nov 6 11:17:09 2008
Copyright (c) 1982, 2005, Oracle. All rights reserved.

Enter user-name: hr
Enter password:

Connected to:
Oracle Database 10g Express Edition Release 10.2.0.1.0 - Production

SQL>

The password you enter is not displayed. The prompt SQL> is shown. Type HELP INDEX to find a list of
commands. Type EXIT to quit.

In development, it is common to put the username, password and database that you want to connect to
all on the command line, but beware that entering the password like this is a security risk:

sqlplus hr/hrpwd@localhost/XE

A better practice is to run:

sqlplus hr@localhost/XE

This will prompt for the password.
Another way is to start SQL*Plus without attempting to log on, and then use the CONNECT command:

$ sqlplus /nolog
. . .
SQL> connect hr/hrpwd@localhost/XE
Connected.

48

Oracle SQL*Plus

SQL>

To connect as a privileged user for database administration, first login to the operating system as a user in
the dba group and then use:

$ sqlplus / as sysdba

or

sqlplus /nolog
SQL> connect / as sysdba

Executing SQL and PL/SQL Statements in SQL*Plus
SQL statements such as queries must be terminated with a semi-colon (;):

SQL> select * from locations;

or with a single slash (/):

SQL> select * from locations
 2 /

This last example also shows SQL*Plus prompting for a second line of input. Code in Oracle's procedural
language, PL/SQL, must end with a slash in addition to the PL/SQL code's semi-colon:

SQL> begin
 2 myproc();
 3 end;
 4 /

The terminating semi-colon or slash is not part of the statement. Tools other then SQL*Plus will use
different methods to indicate “end of statement”.

If a blank line (in SQL) or a single period (in SQL or PL/SQL) is entered, SQL*Plus returns to the main
prompt and does not execute the statement:

SQL> select * from locations
 2
SQL>

Controlling Query Output in SQL*Plus
SQL*Plus has various ways to control output display.

The SET command controls some formatting. For example, to change the page size (how often table
column names repeat) and the line size (where lines wrap):

SQL> set pagesize 80
SQL> set linesize 132

If you are fetching data from LONG, CLOB or (with SQL*Plus 11g) from BLOB columns, increase the
maximum number of characters that will display (the default is just 80):

49

Using Oracle Database

SQL> set long 1000

Note these are local commands to SQL*Plus and do not need a semi-colon.
The column width of queries can be changed with the COLUMN command, here setting the

COUNTRY_NAME output width to 20 characters, and the REGION_ID column to a numeric format with a
decimal place:

SQL> select * from countries where country_id = 'FR';

CO COUNTRY_NAME REGION_ID
-- -- ----------
FR France 1

SQL> column country_name format a20
SQL> column region_id format 99.0
SQL> select * from countries where country_id = 'FR';

CO COUNTRY_NAME REGION_ID
-- -------------------- ----------
FR France 1.0

Output can be spooled to a file with the SPOOL command:

SQL> spool /tmp/myfile.log

Running Scripts in SQL*Plus
If multiple SQL statements are stored in a script myscript.sql, they can be executed with the @ command
either from the terminal prompt:

$ sqlplus hr@localhost/XE @myscript.sql

or from the SQL*Plus prompt:

SQL> @myscript.sql

Because SQL*Plus doesn't have a full history command, writing statements in scripts using an external
editor and running them this way is recommended.

Information On Tables in SQL*Plus
Queries from inbuilt views like USER_TABLES and USER_INDEXES will show information about the objects
you own. A traditional query from the CAT view gives a short summary:

SQL> select * from cat;

TABLE_NAME TABLE_TYPE
------------------------------ -----------
COUNTRIES TABLE
DEPARTMENTS TABLE
DEPARTMENTS_SEQ SEQUENCE
EMPLOYEES TABLE

50

Oracle SQL*Plus

EMPLOYEES_SEQ SEQUENCE
JOBS TABLE
JOB_HISTORY TABLE
LOCATIONS TABLE
LOCATIONS_SEQ SEQUENCE
REGIONS TABLE

10 rows selected.

To find out about the columns of a table, query the USER_TAB_COLUMNS view, or simply use the DESCRIBE
command to give an overview:

SQL> describe countries
 Name Null? Type
 --- -------- ----------------------------
 COUNTRY_ID NOT NULL CHAR(2)
 COUNTRY_NAME VARCHAR2(40)
 REGION_ID NUMBER

Accessing the Demonstration Tables in SQL*Plus
This book uses the Human Resource sample tables, located in the hr schema. To unlock this account and set
the password after the database has been installed, connect as a privileged user and execute an ALTER
USER command:

SQL> connect system/systempwd
SQL> alter user hr identified by hrpwd account unlock;
This sets the password to hrpwd.

Oracle SQL Developer
In addition to Oracle Application Express or SQL*Plus, you can also use Oracle SQL Developer for
database development and maintenance. Oracle SQL Developer is a free, thick-client graphical tool for
database development. You can use SQL Developer to execute SQL statements, execute and debug PL/SQL
statements, and to run a few SQL*Plus commands (like DESCRIBE). SQL Developer includes some prebuilt
reports, and you can create and save your own reports.

SQL Developer can connect to Oracle databases from version 9.2.0.1 onwards, and is available on
Linux, Windows and Mac OS X.

You can download SQL Developer from the Oracle Technology Network at
http://www.oracle.com/technology/products/database/sql_developer. You can also
download patches, extensions, documentation, and other resources from this site. There is also a discussion
forum for you to ask questions of other users, and give feedback to the SQL Developer product team.

Creating a Database Connection
When you start SQL Developer for the first time, there are no database connections configured, so the first
thing you need to do is create one. The default SQL Developer screen is shown in Figure 38.

51

Using Oracle Database

To create a database connection to the local Oracle Database XE database:
1. Select Connections in the left pane, right click and select New Connection. Enter the login credentials

for the Oracle Database XE with the username hr, and password you created for the hr user, the
hostname localhost, and the SID XE.

2. Click the Test button to test the connection. A message is displayed at the bottom left side of the dialog
to tell you whether the test connection succeeded. Click the Connect button to save the connection and
connect to it.

52

Figure 39: Oracle SQL Developer Connection screen.

Figure 38: Oracle SQL Developer login screen.

Oracle SQL Developer

When you have connected to a database, you can browse through the database objects displayed in the left
pane, and the right pane shows the contents of the object. In Figure 40, the employees table is displayed.

Editing Data
You can view and edit data using the Data tab for a table definition. Select the Data tab for the employees
table to display the records available. You can add rows, update data and delete rows using the data grid.
If you make any changes, the records are marked with an asterisk. Throughout SQL Developer, there are
context sensitive menus. Figure 41 shows the choice of context menus available in the data grid.

53

Figure 40: Oracle SQL Developer main screen.

Figure 41: Oracle SQL Developer Data Grid.

Using Oracle Database

Creating a Table
You can create database objects such as tables, views, indexes, and PL/SQL procedures using SQL
Developer. To create a database object, right click on the database object type you want to create, and
follow the dialogs. You can use this method to create any of the database objects displayed in the left pane.

To create a new table:
1. Select Tables in the left pane, right click and select Create Table. The Create Table dialog is displayed.

Enter the column names, types and other parameters as required.

Click the Advanced check box to see more advanced options like constraints, indexes, foreign
keys, and partitions.

2. Click OK to create the table. The new table mytable is now listed in the left pane.

54

Figure 42: Oracle SQL Developer Create Table screen.

Figure 43: Oracle SQL Developer Advanced Create Table
screen.

Oracle SQL Developer

Click on the tabs displayed in the right pane to see the options available on the table, such as the Data tab,
which enables you to add, delete, modify, sort, and filter rows in the table.

Executing a SQL Query
The SQL Worksheet component included in SQL Developer can be used to execute SQL and PL/SQL
statements. Some SQL*Plus commands can also be executed. To execute a SQL statement in SQL
Developer:
1. Select the Database Connection tab in the right hand pane. This is the connection created earlier in

Creating a Database Connection. The SQL Worksheet component is displayed, and shows an area to
enter statements, and a set of tabs below that for further options. If the tab is not available, select the
menu Tools >SQL Worksheet. You are prompted for the database connection name.

55

Figure 44: Oracle SQL Developer screen showing the new
table, mytable.

Using Oracle Database

2. Enter the following two statements in the SQL Worksheet:

DESCRIBE HR.EMPLOYEES
SELECT * FROM HR.EMPLOYEES;

Click the Run Script icon (the second from the left in the right hand pane), or press F5. Both the
lines of this script are run and the output is displayed in tabs below. You can view the output of
the SELECT statement in the Results tab, using F9, and the output of the whole script (including
the DESCRIBE and SELECT statements) in the Script Output tab, by using F5. If you have used
Oracle’s command line tool SQL*Plus, the output in the Script Output window is likely to be
familiar to you.

56

Figure 45: Oracle SQL Developer screen showing SQL
Worksheet.

Figure 46: Oracle SQL Developer screen showing SQL
Worksheet with output.

Oracle SQL Developer

3. If you want to execute a single line of the two-line statement, select the line you want to execute and
click on the Execute Statement icon (the first from the left in the right hand pane), or press F9. In this
case, the SELECT statement (second line) is selected, and the results are shown in the Results tab.

You should also take a moment to click on the Snippets on the top right hand of the interface. Snippets are
a handy set of SQL and PL/SQL code snippets that you can drag into the SQL Worksheet component.

Editing, Compiling and Running PL/SQL
You can use SQL Developer to browse, create, edit, compile, run, and debug PL/SQL.
1. Right click the Procedures node and select New Procedure from the context menu. Add the name

57

Figure 47: Oracle SQL Developer screen showing SQL
Worksheet with output.

Figure 48: Oracle SQL Developer screen showing code
snippets.

Using Oracle Database

ADD_DEPT and click OK.

2. The PL/SQL Editor is opened. Replace or add the text so that your code is as follows:

CREATE OR REPLACE PROCEDURE ADD_DEPT
(NAME IN DEPARTMENTS.DEPARTMENT_NAME%TYPE,
 LOC IN DEPARTMENTS.LOCATION_ID%TYPE)
 IS
BEGIN
 INSERT
 INTO DEPARTMENTS(DEPARTMENT_ID, DEPARTMENT_NAME, LOCATION_ID)
 VALUES(DEPARTMENTS_SEQ.NEXTVAL, NAME, LOC);
END ADD_DEPT;

3. Compile the code by selecting the compile icon in the toolbar. If there are errors, they will appear in
the Message-Log window below

58

Figure 49: SQL Developer new procedure
dialog.

Oracle SQL Developer

4. Run the procedure. The green arrow icon runs the code.

5. SQL Developer provides dialog with an anonymous block to help test and run your code. Find and
replace the NULL values with values of your own, for example, Training and 1800. Query the
Departments table to see the results added.

Running Reports
There are a number of reports included with SQL Developer that may be useful to you, for example,
getting lists of all users in a database, all the tables owned by a user, or all the views available in the data
dictionary.

59

Figure 50: SQL Developer PL/SQL Code Editor.

Figure 51: SQL Developer Run PL/SQL dialog.

Using Oracle Database

You can also create your own reports (using SQL and PL/SQL), and include them in SQL Developer.
To display the version numbers of the database components using one of the supplied reports:

1. Select the Reports tab in the left hand pane. Navigate down to Reports > Data Dictionary Reports >
About Your Database > Version Banner. The report is run and the results are displayed in the right
hand pane.

2. Click the Run Report in SQL Worksheet icon (next to Refresh). The source code is written to the SQL
Worksheet. You can also export the supplied reports to edit and add back as user defined reports.

60

Figure 52: Oracle SQL Developer screen showing output
from a report.

Figure 53: Oracle SQL Developer screen showing the
source code of a report.

Oracle SQL Developer

Creating Reports
To create your own reports, select User Defined Reports, and right click. It is good practice to create folder
for your reports, to categorize them.
1. Right click the User Defined Reports node and select Add Folder. Complete the details in the dialog.

You can use this folder to import or add new reports.

2. Select the folder you created and right click to select Add Report.

3. Give the report a name and description and enter the following SQL text.

SELECT Last_name,
 DEPARTMENT_NAME,
 CITY
FROM DEPARTMENTS D,
 LOCATIONS L,
 EMPLOYEES E
WHERE(D.LOCATION_ID = L.LOCATION_ID)
AND(D.MANAGER_ID= E.EMPLOYEE_ID)
AND(E.DEPARTMENT_ID= D.DEPARTMENT_ID)
order by CITY, DEPARTMENT_NAME

4. Notice that the default style is table. You can test the report to ensure your SQL is correct, without
leaving the dialog. Click the Test button on the Details tab.

61

Figure 54: SQL Developer User Defined Reports

Using Oracle Database

5. Click Apply to save and close.

6. To run the report, select it in the Reports Navigator. You are prompted for a database connection.

You can create tabular reports, charts, drill down reports and master/detail reports. For all reports,
supplied and user defined, you can export, import and share your reports.

62

Figure 55: SQL Developer Create Report Dialog

Figure 56: SQL Developer User Defined, Tabular Report

CHAPTER 6

INSTALLING APACHE HTTP SERVER

This Chapter gives you the steps needed to install and configure the Apache HTTP Server for use with
PHP. If you already have Apache installed, you can skip this chapter.

The instructions uses Apache HTTP Server Release 2.0.59 from
http://httpd.apache.org/download.cgi. Steps are given for Oracle Enterprise Linux and
Windows XP Professional Edition. The procedure to install on other Linux platforms is the same as for
Oracle Enterprise Linux.

Note: Apache release 2.2.9 is the latest version available. The installation shown in this Chapter may need some variation if this
latest version is used.

Installing Apache HTTP Server on Linux
To install the Apache HTTP Server for use with PHP on Oracle Enterprise Linux.
1. Download the Apache HTTP Server from http://httpd.apache.org/download.cgi. The

version used in this installation is httpd-2.0.59.tar.bz2.

2. Log in as the root user and extract the files:

tar -jxvf httpd-2.0.59.tar.bz2

If you are familiar with the tar command on UNIX systems, you may be wondering why we did not
need to invoke bunzip2 to extract the .tar file. Linux includes the GNU version of tar, which has a
new -j flag to automatically uncompress a bzipped .tar file. If you downloaded the .gz gzipped file,
you could have used the -z flag instead.

3. Configure and build the web server:
cd httpd-2.0.59
./configure --prefix=/usr/local/apache --enable-module=so
make
make install

When configuring the web server, the option --enable-module=so allows PHP to be compiled as a
Dynamic Shared Object (DSO). Also, the --prefix= option sets where Apache HTTP Server will be
installed during the command make install.

63

http://httpd.apache.org/download.cgi
http://httpd.apache.org/download.cgi

Installing Apache HTTP Server

Note: With Apache 2, you should use the default pre-fork MPM (“Multi-Processing Module”), because thread-safety of
many of the PHP libraries is not known.

Starting and Stopping Apache HTTP Server
The apachectl script is installed in the Apache bin directory. Use this script to start and stop Apache HTTP
Server. To start Apache HTTP Server:

/usr/local/apache/bin/apachectl start

You should test that Apache has been installed properly and is started on your machine by opening your
web browser to http://localhost/ or http://127.0.0.1/ to display the Apache home page.

Now stop Apache so it can be configured for PHP:

/usr/local/apache/bin/apachectl stop

Note: If you are using Oracle Database10g Release 10.2, but not Oracle Database XE, you must give the nobody user access to
files in the Oracle directory. With Oracle Database 10g Release 10.2.0.2 onwards, there is a script located in
$ORACLE_HOME/install/changePerm.sh to do this.

If there are errors, they are displayed on your screen. Errors may also be recorded in
/usr/local/apache/logs/error_log. If you have problems, check your httpd.conf and php.ini configuration files for
any incorrect settings, and make corrections.

Configuring Apache HTTP Server on Linux
When you use Apache HTTP Server with PHP OCI8, you must set some Oracle environment variables
before starting the web server. Which variables you need to set are determined by how PHP is installed,
how you connect, and what optional settings are desired. Information about setting the environment is in
Setting Oracle Environment Variables for Apache in the chapter Connecting to Oracle Using OCI8.

Note: Do not set Oracle environment variables in PHP scripts with putenv(). The web server may load Oracle libraries and
initialize Oracle data structures before running your script. Using putenv() causes hard to track errors as the behavior is not
consistent for all variables, web servers, operating systems, or OCI8 functions. Variables should be set prior to Apache starting.

Installing Apache HTTP Server on Windows
The following procedure describes how to install the Apache HTTP Server on Windows.

64

http://localhost/

Installing Apache HTTP Server on Windows

1. Download the Apache HTTP Server Windows binaries from
http://www.apache.org/dist/httpd/binaries/win32/. The release used in this installation
is Apache HTTP Server 2.0.59, and the downloaded file is named apache_2.0.59-win32-x86-no_ssl.msi.

2. Double click the downloaded file apache_2.0.59-win32-x86-no_ssl.msi.

3. Follow the Apache HTTP Server installation wizards. You should select to install Apache HTTP Server
for All Users, on Port 80, because the only for the Current User alternative will clash with Oracle
Database Express Edition’s default port 8080.

Starting and Stopping Apache HTTP Server
As part of installation, the Apache HTTP Server is started. You should now test that Apache HTTP Server
has been installed properly and started on your machine by opening your web browser to
http://localhost/ or http://127.0.0.1/ to display the Apache home page.

Your system tray has an Apache Monitor control that makes it easy to stop and restart the Apache
HTTP Server when needed. Alternatively, use the Apache options added to your Windows Start menu.

65

http://localhost/
http://www.apache.org/dist/httpd/binaries/win32/

Installing Apache HTTP Server

66

CHAPTER 7

INSTALLING PHP
This Chapter discusses ways of installing PHP on Linux and Windows. Installation on other systems such
as Solaris and Mac OS X is similar to the Linux steps.

The main installation scenarios are covered. You might come across other situations that require a
combination of steps to be followed.

The Apache HTTP Server need to be installed before installing PHP, and a database must be accessible
in your network.

Installing PHP with OCI8 on Linux
These steps assume the default Apache httpd RPM package in used on Oracle Enterprise Linux 5. However,
if you manually installed Apache in /usr/local/apache, then the command to start and stop Apache is
/usr/local/apache/bin/apachectl, the APXS utility is in /usr/local/apache/bin/apxs, the configuration file is in
/usr/local/apache/conf/httpd.conf and the module directory is /usr/local/apache/modules.

When running PHP, use the same version of the Oracle libraries as were used during the build process.

Installing OCI8 Using a Local Database
To install OCI8 on Oracle Enterprise Linux which has a database installed, login as the root user:
1. Shutdown Apache:

/usr/sbin/apachectl stop

2. Download PHP 5.2.7 from http://www.php.net/downloads.php.

3. Log in as the root user and extract the PHP source code:

tar -jxf php-5.2.7.tar.bz2
cd php-5.2.7

If you downloaded the .tar.gz file, extract it with tar -zxf.
4. Configure PHP with OCI8:

export ORACLE_HOME=/usr/lib/oracle/xe/app/oracle/product/10.2.0/server
./configure \
> --with-apxs2=/usr/sbin/apxs \
> --with-oci8=$ORACLE_HOME \
> --enable-sigchild

Use the appropriate path to your Oracle software installation. The path can be found in /etc/oratab.
If you installed your own Apache, use the appropriate path to the Apache extension tool, for
example /usr/local/apache/bin/apxs. If you have Apache 1.3 instead of Apache 2, change the –-with
—apxs2 option to –-with-apxs.

67

http://www.php.net/downloads.php

Installing PHP

Note: Although configure fails if it cannot find the Oracle software, prior to PHP 5.2.4 it silently ignores a misspelled
option name. Before continuing, review the output and make sure the “checking for Oracle (OCI8) support” line was
marked as “yes”.

Other desired options and extensions can be used in the configure command. To list all the options,
use the command:

configure –-help

5. Make and install PHP:

make
make install

6. Copy PHP’s supplied initialization file php.ini-recommended. To find the destination directory, use the
--ini option to command line PHP:

php --ini
Configuration File (php.ini) Path: /usr/local/lib
Loaded Configuration File: (none)
Scan for additional .ini files in: (none)
Additional .ini files parsed: (none)

This shows the path is /usr/local/lib. Copy the file to that directory:

cp php.ini-recommended /usr/local/lib/php.ini

7. For testing it is helpful to edit php.ini and set display_errors to On so you see any problems in your
code. Make sure you change this configuration option back to Off before making your application
available to users.

8. Edit Apache’s configuration file /etc/httpd/conf/httpd.conf and add the following lines:

#
This section will call PHP for .php, .phtml, and .phps files
#
AddType application/x-httpd-php .php
AddType application/x-httpd-php .phtml
AddType application/x-httpd-php-source .phps

9. If a LoadModule line was not already inserted by the PHP install, add it too:

LoadModule php5_module /usr/lib/httpd/modules/libphp5.so

10. Set any required Oracle environment variables, such as ORACLE_HOME, LD_LIBRARY_PATH and
NLS_LANG. See Setting Oracle Environment Variables for Apache in the chapter Connecting to Oracle Using
OCI8.

68

Installing PHP with OCI8 on Linux

11. Restart Apache:

/usr/sbin/apachectl start

Installing OCI8 Using Oracle Instant Client
PHP links with Oracle libraries. If PHP is not installed on the database host machine, then a small set of
libraries called Oracle Instant Client can be used.

To install with Oracle Instant Client:
1. Shutdown Apache:

/usr/sbin/apachectl stop

2. Download PHP 5.2.7 from http://www.php.net/downloads.php.

3. Extract the PHP source code:

tar -jxf php-5.2.7.tar.bz2

If you downloaded the .tar.gz file, extract it with tar -zxf.

4. Download the RPM or ZIP files for the Basic and SDK Instant Client packages from the Instant Client
page on the Oracle Technology Network:
http://www.oracle.com/technology/tech/oci/instantclient/instantclient.htm
l
Collectively, the two packages are about 41 MB in size. The even smaller Basic-lite package can be
substituted for Basic, if its character set and error message language restrictions do not impact your
application.

5. If you are using the RPMs, install the RPMs as the root user:

rpm -Uvh oracle-instantclient11.1-basic-11.1.0.7.0-1.i386.rpm
rpm -Uvh oracle-instantclient11.1-devel-11.1.0.7.0-1.i386.rpm

The first RPM puts the Oracle libraries in /usr/lib/oracle/11.1/client/lib and the second creates headers in
/usr/include/oracle/11.1/client.
If you are using the Instant Client ZIP files, unzip the Basic and the SDK packages to a directory of
your choice, for example $HOME/instantclient_11_1. The files should be unzipped together so the
SDK is in $HOME/instantclient_11_1/sdk.

6. If Instant Client was installed from the ZIP files, create a symbolic link:

cd $HOME/instantclient_11_1
ln -s libclntsh.so.11.1 libclntsh.so

7. Configure PHP:

cd php-5.2.7
./configure \

69

http://www.php.net/downloads.php

Installing PHP

> --with-apxs2=/usr/sbin/apxs \
> --with-oci8=instantclient,/usr/lib/oracle/11.1/client/lib \
> --enable-sigchild

If you are using the ZIP files then change the --with-oci8 option to the unzipped directory:

--with-oci8=instantclient,$HOME/instantclient_11_1

If you are using Instant Client RPMs on 64 bit Linux, use:

--with-oci8=instantclient,/usr/lib/oracle/11.1/client64/lib

8. Rebuild PHP:

make
make install

9. Copy PHP’s supplied initialization file:

cp php.ini-recommended /usr/local/lib/php.ini

10. Set any required Oracle environment variables such as LD_LIBRARY_PATH and NLS_LANG. See Setting
Oracle Environment Variables for Apache in the chapter Connecting to Oracle Using OCI8.

11. Restart the Apache HTTP Server:

/usr/sbin/apachectl start

Upgrading PHP with PECL OCI8 on Linux
The latest OCI8 package from PECL can be used to upgrade OCI8 in a full PHP source bundle – if the PECL
version is more recent than that included in PHP. Upgrading OCI8 is strongly recommended if you must
use PHP 4. Note PHP 4 is no longer maintained by the PHP community and should not be used for new
projects. OCI8 1.3 is also more recent than the OCI8 extension in PHP 5.2.

This section uses PHP 4 as the example target PHP distribution (OCI8 1.3 will build with PHP 4.3.9
onwards). The instructions are equivalent for other versions of PHP.

Upgrading OCI8 as a Static Library on Linux
If OCI8 is (or will be) statically linked with PHP, PHP must be rebuilt using the new extension source code.
To build and install PHP 4 on Oracle Enterprise Linux:
1. Download php-4.4.9.tar.bz2 from http://www.php.net/downloads.php.

2. Extract the file:

tar -jxf php-4.4.9.tar.bz2

If you downloaded the .tar.gz file, extract it with tar -zxf.
3. Delete the default oci8 extension:

70

http://www.php.net/downloads.php

Upgrading PHP with PECL OCI8 on Linux

rm -rf php-4.4.9/ext/oci8

If you only rename the oci8 directory the configure script will not be properly created.

4. Download the latest OCI8 extension from http://pecl.php.net/package/oci8.

5. Extract the files and move the directory to ext/oci8:

tar -zxf oci8-1.3.4.tgz
mv oci8-1.3.4 php-4.4.9/ext/oci8

6. Rebuild the configuration script with the updated extension’s options:

cd php-4.4.9
rm –rf configure config.cache autom4te.conf
./buildconf –-force

PHP prefers older versions of the operating system build tools. Before running buildconf, you
might need to install the autoconf213 package. If you have both old and new packages installed,
later versions of PHP can be forced to use the appropriate version, for example with:

 export PHP_AUTOCONF=autoconf-2.13
 export PHP_AUTOHEADER=autoheader-2.13

7. Configure and build PHP following step 4 onward in the previous section Installing OCI8 Using a Local
Database or, if you intend to use Oracle Instant Client, by following the step 4 onwards in the section
Installing OCI8 Using Oracle Instant Client.

Upgrading OCI8 on Linux Using the PECL Channel
PHP's PECL packaging system can also be used to install or upgrade OCI8 as a shared library.

These steps can also be used to add OCI8 to the default PHP that Oracle Enterprise Linux comes with.
The php-pear and php-devel RPM packages are required to get the default pear, pecl and phpize executables on
Enterprise Linux. To install:
1. Shutdown Apache:

/usr/sbin/apachectl stop

2. Remove any existing OCI8 extension:

pecl uninstall oci8

3. If you are behind a firewall, set the proxy, for example:

pear config-set http_proxy http://example.com:80/

4. Download and install OCI8:

pecl install oci8

71

http://pecl.php.net/package/oci8

Installing PHP

Respond to the prompt as if it were a configure –-with-oci8 option. If you have a local
database, type the full path to the software location:

/usr/lib/oracle/xe/app/oracle/product/10.2.0/server

Otherwise if you have Oracle Instant Client 11.1.0.7 RPMs, type:

instantclient,/usr/lib/oracle/11.1/client/lib

On 64 bit Linux with Instant Client RPMs the line would be

instantclient,/usr/lib/oracle/11.1/client64/lib

5. Edit php.ini and add:

extension = oci8.so

If extension_dir is not set, set it to the directory where oci8.so was installed, for example:

extension_dir = /usr/lib/php/modules

6. Set any required Oracle environment variables such as LD_LIBRARY_PATH and NLS_LANG. See Setting
Oracle Environment Variables for Apache in the chapter Connecting to Oracle Using OCI8.

7. Restart Apache:

/usr/sbin/apachectl start

Upgrading OCI8 as a Shared Library on Linux
These steps are the manual equivalent to the previous pecl install oci8 command.

To install OCI8 on an existing PHP installation as a shared library:
1. Shutdown Apache:

/usr/sbin/apachectl stop

2. If OCI8 was previously installed, backup or remove the oci8.so file

rm /usr/lib/php/modules/oci8.so

3. Download the OCI8 1.3.4 extension from PECL, http://pecl.php.net/package/oci8
4. Extract and prepare the new code:

tar -zxf oci8-1.3.4.tgz
cd oci8-1.3.4
phpize

5. Configure OCI8. If you have a local database, use:

./configure –-with-oci8=shared,$ORACLE_HOME

72

http://pecl.php.net/package/oci8

Upgrading PHP with PECL OCI8 on Linux

Otherwise if you have Oracle Instant Client 11.1.0.7 use:

./configure –-with-oci8=\
> shared,instantclient,/usr/lib/oracle/11.1/client/lib

6. Build the shared library:

make

7. Install the library:

cd oci8-1.3.4
make install

8. Edit /etc/php.ini and add this line:

extension = oci8.so

9. If extension_dir is not set, set it to the directory where oci8.so was installed, for example:

extension_dir = /usr/lib/php/modules

10. Set any required Oracle environment variables such as LD_LIBRARY_PATH and NLS_LANG. See Setting
Oracle Environment Variables for Apache in the chapter Connecting to Oracle Using OCI8.

11. Restart Apache:

/usr/sbin/apachectl start

Installing PHP With OCI8 on Windows
This section discusses the PHP Windows MSI installer. PHP is also installable from ZIP files. Refer to the
PHP documentation for those steps.

To install OCI8 on Windows, the Oracle 10g or 11g client libraries are required. These can be from a
local database, or from Oracle Instant Client. Apache is also required.

PHP binaries for Windows come in thread-safe and non- thread-safe bundles. The non- thread-safe
version requires the web server to be in a non-threaded mode.

Installing OCI8 Using a Local Database on Windows
To install OCI8 on Windows XP Professional Edition:
1. Download the PHP 5.2.7 installer package from http://www.php.net/downloads.php.

2. Double click on the downloaded file php-5.2.7-win32-installer.msi. The PHP Windows installer starts.

3. Click Next on the Welcome screen. The license agreement is displayed.

4. Accept the license agreement by checking the box and click Next.

5. Select the installation location of the PHP files and click Next.

73

http://www.php.net/downloads.php

Installing PHP

6. In the Web Server Setup screen, select the web server you want to use. This installation uses the
Apache 2.0 module option. Select Apache 2.0.x Module and click Next.

7. In the Apache Configuration Directory screen, select the location of the Apache conf directory and click
Next. For Apache 2.0, the standard configuration directory is C:\Program Files\ApacheGroup\Apache2\
conf\

8. In the Choose Items to Install screen, scroll down to the Extensions branch and add the Oracle 8
extension to the installation. Click Next.

9. In the Ready to Install PHP 5.2.7 screen, click Install. The installer installs PHP.

10. A dialog is displayed asking whether you want to configure Apache. Click Yes.

11. A confirmation message is displayed to confirm that the httpd.conf file has been updated. Click OK.

12. A confirmation message is displayed to confirm that the mime.types file has been updated. Click OK.

13. A final confirmation message is displayed to confirm that the PHP installation has completed. Click
Finish.

14. Restart Apache with Start > Programs > Apache HTTP Server 2.0.59 > Control Apache
Server > Restart. This opens a console window showing any error messages. Errors may also
be recorded in C:\Program Files\Apache Group\Apache2\logs\error.log. If you have errors,
double check your httpd.conf and php.ini files, and correct any problems.

Installing OCI8 with Instant Client on Windows
After installing the Apache HTTP Server, you can install Oracle Instant Client and configure PHP to
connect to a remote Oracle database.

To install:
1. Download the Instant Client Basic package for Windows from the Instant Client page on the Oracle

Technology Network:
http://www.oracle.com/technology/tech/oci/instantclient/instantclient.html
The Windows 32 bit ZIP file is called instantclient-basic-win32-11.1.0.6.0.zip and is around 42 MB in
size.
If you need to connect to Oracle 8i, then install the Oracle 10g Instant Client.
On some Windows installations, to use Oracle 10g Instant Client you may need to locate a copy of
msvcr71.dll and put it in your PATH.

2. Create a new directory (for example, C:\instantclient_11_1). Unzip the downloaded file into the new
directory.

3. Edit the Windows environment and add the location of the Oracle Instant Client files,
C:\instantclient_11_1, to the PATH environment variable, before any other Oracle directories. For
example, on Windows XP, use Start > Settings > Control Panel > System > Advanced > Environment
Variables, and edit PATH in the System Variables list.

74

http://www.oracle.com/technology/tech/oci/instantclient/instantclient.html

Installing PHP With OCI8 on Windows

If you are using a tnsnames.ora file to define Oracle Net connect names (database aliases), copy the
tnsnames.ora file to C:\instantclient_11_1, and set the user environment variable TNS_ADMIN to
C:\instantclient_11_1.
Set any other required Oracle globalization language environment variables, such as NLS_LANG. If
nothing is set, the default local environment is used. See the Globalization chapter, for more
information on globalization with PHP and Oracle.
Unset any Oracle environment variables that are not required, such as ORACLE_HOME and
ORACLE_SID.

4. Install PHP following the steps in the previous section, Installing OCI8 Using a Local Database on
Windows.

5. Restart the Apache HTTP Server.

Upgrading OCI8 on Windows

The pecl4win site mentioned here is no longer maintained and the steps no longer apply to recent versions of PHP. Current
alternatives are to upgrade your complete PHP distribution, or build PHP yourself. The Windows build team in the PHP community
is working on a replacement for pecl4win. This section has been retained for reference.

To install PHP 4 on Windows XP Professional Edition:
1. Download the PHP 4.4.9 ZIP file from http://www.php.net/downloads.php.

2. Uncompress php-4.4.9-Win32.zip to a directory called C:\php-4.4.9-Win32.

3. Delete the old OCI8 extension file C:\php-4.4.9-Win32\extensions\php_oci8.dll.

4. Download php_oci8.dll for the 4.4 branch from http://pecl4win.php.net/ext.php/php_oci8.dll and move
it to C:\php-4.4.9-Win32\extensions\php_oci8.dll.

Note: The OCI8 DLLs for Windows require the Oracle 10g or 11g Client libraries.

5. Copy C:\php-4.4.9-Win32\php4ts.dll into the C:\php-4.4.9-Win32\sapi directory. If you run the PHP
command line interface copy it to the C:\php-4.4.9-Win32\cli directory too.

6. Copy php.ini-recommended to C:\Program Files\Apache Group\Apache2\conf\php.ini.

7. Edit php.ini and perform the following:

● Change extension_dir to C:\php-4.4.9-Win32\extensions, which is the directory
containing php_oci8.dll and the other PHP extensions.

● Uncomment (remove the semicolon from the beginning of the line) the option
extension=php_oci8.dll.

75

http://www.php.net/downloads.php

Installing PHP

8. For testing, it is helpful to set display_errors to On, so you see any problems in your code. Make
sure to unset it when your application is released.

9. Edit the file httpd.conf and add the following lines. Make sure to use forward slashes / instead of back
slashes \:

#
This will load the PHP module into Apache
#
LoadModule php4_module C:/php-4.4.9-Win32/sapi/php4apache2.dll
#
This section will call PHP for .php, .phtml, and .phps files
#
AddType application/x-httpd-php .php
AddType application/x-httpd-php .phtml
AddType application/x-httpd-php-source .phps
#
This is the directory containing php.ini
#
PHPIniDir "C:/Program Files/Apache Group/Apache2/conf"

10. Restart Apache.

Installing OCI8 with Oracle Application Server on Linux
Oracle includes PHP with its mid-tier Application Server 10g Release 3 allowing you to use the same web
server for PHP and for J2EE applications.

PHP is enabled by default. The Oracle HTTP Server document root is

$ORACLE_HOME/Apache/Apache/htdocs

(Yes, Apache is repeated twice). Files with .php or .phtml extensions in this directory will be executed by
PHP. Files with a .phps extension will be displayed as formatted source code.

Version 10.1.3.0 of the Application Server (AS) comes with PHP 4.3.11. The AS 10.1.3.2 patchset adds
PHP 5.1.2. If you have a strong need to use a different version of PHP without installing a new web server,
you may be able to compile your own PHP release using these steps.

Note: Changing the version of PHP in AS is not supported (and hence is not recommended) but is technically possible in some
circumstances. For any AS support calls, regardless of whether they are PHP related, Oracle Support will ask you to revert the
changes before beginning investigation.

The technical problem faced with building PHP is that the Oracle libraries for AS do not include header
files. This can be overcome by linking PHP with Oracle Instant Client but care needs to be taken so that AS
itself does not use the Instant Client libraries. Otherwise you will get errors or unpredictable behavior.

These steps are very version and platform specific. They may not be technically feasible in all
deployments of AS.

76

Installing OCI8 with Oracle Application Server on Linux

A previous installation of AS 10.1.3 is assumed. To install a new version of PHP:
1. Log on as the oracle user and change to the home directory:

$ cd $HOME

2. Download the Oracle 10g or 11g Basic and SDK Instant Client ZIP packages from the Instant Client
page on the Oracle Technology Network:
http://www.oracle.com/technology/tech/oci/instantclient/instantclient.html

3. Extract the ZIP files:

$ unzip instantclient-basic-linux32-10.2.0.3-20061115.zip
$ unzip instantclient-sdk-linux32-10.2.0.3-20061115.zip

4. Change to the Instant Client directory and symbolically link libclntsh.so.10.1 to libclntsh.so:

$ cd instantclient_10_2
$ ln -s libclntsh.so.10.1 libclntsh.so

The Instant Client RPMs could also be used, in which case this last step is unnecessary.
Be wary of having Instant Client in /etc/ld.so.conf since Instant Client libraries can cause conflicts
with AS. The opmnctl tool may fail with the error Main: NLS Initialization Failed!!.

5. Download PHP 5.2.7 from http://www.php.net/downloads.php and extract the file:

$ tar -jxf php-5.2.7.tar.bz2

6. Set the ORACLE_HOME environment variable to your AS install directory:

$ export ORACLE_HOME=$HOME/product/10.1.3/OracleAS_1

7. Shut down the Apache HTTP Server:

$ $ORACLE_HOME/opmn/bin/opmnctl stopproc ias-component=HTTP_Server

8. Edit $ORACLE_HOME/Apache/Apache/conf/httpd.conf and comment out the PHP 4 LoadModule line
by prefixing it with #:

#LoadModule php4_module libexec/libphp4.so

If you had enabled PHP 5 for AS 10.1.3.2, the commented line will be:

#LoadModule php5_module libexec/libphp5.so

9. Back up $ORACLE_HOME/Apache/Apache/libexec/libphp5.so since it will be replaced.

10. Set environment variables required for the build to complete:

$ export PERL5LIB=$ORACLE_HOME/perl/lib
$ export LD_LIBRARY_PATH=$ORACLE_HOME/lib:$LD_LIBRARY_PATH
$ export CFLAGS=-DLINUX

77

http://www.oracle.com/technology/tech/oci/instantclient/instantclient.html

Installing PHP

There is no need to set CFLAGS if you have AS 10.1.3.2. It is needed with AS 10.1.3.0 to avoid a
duplicate prototype error with gethostname() that results in compilation failure.

11. Configure PHP:

$ cd php-5.2.7
$./configure \
> --prefix=$ORACLE_HOME/php \
> --with-config-file-path=$ORACLE_HOME/Apache/Apache/conf \
> --with-apxs=$ORACLE_HOME/Apache/Apache/bin/apxs \
> --with-oci8=instantclient,$HOME/instantclient_10_2 \
> --enable-sigchild

With the older AS 10.1.2 and older Instant Client releases, some users reportedly also specified
--disable-rpath.

12. Make and install PHP

$ make
$ make install

The installation copies the binaries and updates $ORACLE_HOME/Apache/Apache/conf/httpd.conf,
automatically adding the line:

LoadModule php5_module libexec/libphp5.so

13. Back up and update $ORACLE_HOMEApache/Apache/conf/php.ini with options for PHP 5.2.7, for
example all the new oci8 directives. Refer to $HOME/php-5.2.7/php.ini-recommended for new options.

14. The Oracle HTTP Server can now be restarted:

$ $ORACLE_HOME/opmn/bin/opmnctl startproc ias-component=HTTP_Server

Reminder: these steps invalidates all support for AS, not just for the PHP component, and they should not be used in production
environments.

Installing PHP With PDO
To use PDO with Oracle, install the PDO extension and the PDO_OCI database driver for Oracle. The PDO
extension and drivers are included in PHP from release 5.1.

The installation shown uses PHP 5.2.7, Apache 2.0.59, Oracle Enterprise Linux, and Windows XP
Professional Edition. This procedure works for all versions of PHP after release 5.1. You can install
PDO_OCI and OCI8 at the same time by combining the appropriate options to configure or by selecting
both extensions during installation on Windows.

78

Installing PHP With PDO

Installing PDO on Linux
To install PDO on Oracle Enterprise Linux:
1. Download PHP 5.2.7 from http://www.php.net/downloads.php.

2. Log in as the root user and extract the PHP source code using the following commands:

tar -jxf php-5.2.7.tar.bz2
cd php-5.2.7

If you downloaded the .tar.gz file, extract it with tar -zxf.
3. Configure PHP:

export ORACLE_HOME=/usr/lib/oracle/xe/app/oracle/product/10.2.0/server
./configure \
> --with-apxs2=/usr/sbin/apxs \
> --enable-pdo \
> --with-pdo-oci=$ORACLE_HOME \
> --enable-sigchild

Note there is no “8” in the –-with-pdo-oci option name. Review the output of configure and
check that the extension was enabled successfully before continuing.

If you want to build PDO_OCI with the Oracle Instant Client RPMs, change the –-with-pdo-oci
option to:

--with-pdo-oci=instantclient,/usr,11.1

This indicates to use the Instant Client in /usr/lib/oracle/11.1. Note the Oracle 11.1.0.6 Instant Client
RPMs have 11.1.0.1 in the package name and installation path.

If Instant Client ZIP files are used, the option should be:

--with-pdo-oci=instantclient,$HOME/instantclient_11_1,11.1

The trailing version number in this command for ZIP installs is only used for sanity checking and
display purposes.

With Instant Client ZIP files, if the error

I'm too dumb to figure out where the libraries are in your Instant Client
install

is shown it means the symbolic link from libclntsh.so to libclntsh.so.11.1 (or the appropriate version) is
missing. This link must be manually created unless the RPM files are used.

4. Make and install PHP.

make
make install

5. Continue from step 6 of the previous Linux section Installing OCI8 Using a Local Database to create the

79

http://www.php.net/downloads.php

Installing PHP

php.ini script and configure Apache.

Installing PDO on Windows
To install PDO on Windows XP Professional Edition:
1. Install an Oracle Client or Oracle Database. See the section Installing OCI8 With Oracle Instant Client for

steps on installing Oracle Instant Client.

2. Follow the steps in Installing OCI8 on Windows.

3. At step 8, add the PDO extension by also selecting to install PHP > Extensions > PDO > Oracle10g
Client and above

In PHP 5.2.6 and earlier, the option is called Oracle 8i +.

In PHP 5.2.6 and earlier you can select the Oracle 7 option if you have Oracle 8i or 9i client
libraries. This choice is not available in PHP 5.2.7 onwards.

4. Continue with the rest of the PHP installation.

5. Restart the Apache HTTP Server.
The Oracle PDO_OCI extension is now installed and configured with PHP.

Checking OCI8 and PDO_OCI Installation
To confirm PHP was installed correctly, create a script that shows the PHP configuration settings. The file
should be in a directory Apache can read, such as the document root, specified by the DocumentRoot
setting in the httpd.conf file. On Oracle Enterprise Linux the directory is /var/www/html.

80

Figure 57: PDO Installation on Windows.

Checking OCI8 and PDO_OCI Installation

Script 4: phpinfo.php

<?php
phpinfo();
?>

Load the script in your browser:

http://localhost/phpinfo.php

Alternatively, the script can be run in a terminal window with command-line PHP:

$ php phpinfo.php

In the output, check the Loaded Configuration File entry shows the php.ini that the previous installation steps
set up.

The Environment section should show the Oracle environment variables. See Setting Oracle
Environment Variables for Apache in the chapter Connecting to Oracle Using OCI8.

If OCI8 was installed, there will be a section for it. The parameter values are discussed in later chapters:

If PDO_OCI was installed, its configuration section will look like:

81

Figure 58: phpinfo() output when OCI8 is enabled.

Installing PHP

82

Figure 59: phpinfo() when PDO_OCI is enabled.

CHAPTER 8

INSTALLING ZEND CORE FOR ORACLE

This Chapter shows you how to install Zend Core for Oracle Release 2.5, a fully tested and supported PHP
distribution that includes integration with Oracle Database 10g client libraries. It is a pre-built stack that
makes it easier to get started with PHP and Oracle, as all the hard work of installation and configuration
has been done for you. Zend Core for Oracle release 2.5 includes PHP 5.2.5, the refactored OCI8 driver,
Oracle Instant Client, and an optional Apache HTTP Server 2.2.4.

The collaboration between Oracle and Zend reinforces Oracle’s commitment to the open source PHP
community.

Zend Core for Oracle is supported by Zend on the following operating systems:

● Oracle Enterprise Linux

● Linux SLES V9 & V10 on x86, x86-64

● Linux RHEL V4 & V5 on x86, x86-64

● Windows XP & 2003 (32 bit), Vista (32 & 64 bit)

● Solaris V8, V9 & V10 on Sparc

The web servers that are supported are:

● Apache 1.3.x

● Apache 2.0.x (compiled in prefork mode only)

● Apache 2.2.x (compiled in prefork mode only)

● IIS 5, 6, 7

● Oracle HTTP Server

Zend Core for Oracle is supported against Oracle Database 11g, 10g and 9i. That means that you can have a
fully supported stack of database, web server and PHP.

Installing Zend Core for Oracle
This procedure installs Zend Core for Oracle on Linux and Windows platforms. The procedure to install on
other operating systems is similar as the installer is the same on all operating systems. There are some
slight differences, like the names and locations of the web server, but the installation is similar on all
platforms. So you can use this procedure on all supported operating systems.

Installing Zend Core for Oracle on Linux
To install Zend Core for Oracle on Linux:
1. Download the Zend Core for Oracle file from the Oracle Technology Network

83

Installing Zend Core for Oracle

(http://otn.oracle.com/php).

2. Log in or su as root if you are not already.

$ su
Password:

3. Extract the contents of the downloaded Zend Core for Oracle software file. This example uses the
Linux 64-bit install. If you are using the 32-bit install, the file name may vary slightly.

tar -zxf ZendCoreForOracle-2.5.0-linux-glibc23-amd64.tar.gz

Files are extracted to a subdirectory called ZendCoreForOracle-2.5.0-linux-glibc23-amd64.
4. Change directory to ZendCoreForOracle-2.5.0-linux-glibc23-amd64 and start the Zend Core for Oracle

installation:

cd ZendCoreForOracle-2.5.0-linux-glibc23-amd64
./install -g

The Zend Core for Oracle Installation screen is displayed.

5. Click OK. The Zend Core for Oracle license agreement is displayed.

84

Figure 60: Zend Core for Oracle Installation screen.

Installing Zend Core for Oracle

6. Click Yes. The Zend Core for Oracle installation location screen is displayed.

7. Specify the location for installing Zend Core for Oracle: accept the default; or enter your preferred
location. Click OK. The Zend Core for Oracle password screen is displayed.

85

Figure 61: Zend Core for Oracle License Agreement screen.

Figure 62: Zend Core for Oracle installation location
screen.

Installing Zend Core for Oracle

8. Enter a password for the Zend Core for Oracle Administration Console. This is the password for the
web-based interface to Zend Core for Oracle. Confirm the password and click OK. The Zend Core for
Oracle installation options screen is displayed.

9. Select the Zend Core for Oracle components you want to install. We suggest you select Configure
Apache Webserver, and Install Oracle Client. You may optionally enter your Zend network user ID
and password to be able to use the Zend Core Console to track when updates to Zend Core and PHP
components are available. If you have not registered, or do not want to track updates, make sure the
Configure Zend Network is not selected. Click OK. The Zend Core for Oracle select web server screen
is displayed.

86

Figure 63: Zend Core for Oracle password screen.

Figure 64: Zend Core for Oracle installation options screen.

Installing Zend Core for Oracle

10. Zend Core for Oracle can install Apache if you don’t have it on your system. If you want to install and
configure Apache, select Install the Zend Core bundled Apache, or if you want to use an existing web
server, select the web server from the list. This installation assumes that you have selected to use an
existing Apache server already installed on your machine. Click OK. The Zend Core for Oracle virtual
host selection screen. screen is displayed.

11. Select Configure Zend Core on the main host, and click OK. The Zend Core for Oracle Apache
configuration details screen is displayed.

87

Figure 65: Zend Core for Oracle select web server screen.

Figure 66: Zend Core for Oracle virtual host selection
screen.

Installing Zend Core for Oracle

12. Confirm the configuration details for your Apache installation. Click OK. The Zend Core for Oracle
Apache installation method screen is displayed.

13. Select Apache Module as the installation method, and click OK. You can also use the FastCGI option
if you prefer. The installer unpacks the installation files and installs Zend Core for Oracle. The Zend
Core for Oracle further installation options screen is displayed.

88

Figure 67: Zend Core for Oracle Apache configuration
details screen.

Figure 68: Zend Core for Oracle Apache installation
method screen.

Installing Zend Core for Oracle

14. Select Finish installation and click OK. The Zend Core for Oracle installation successful screen is
displayed.

15. This screen contains useful configuration commands and the URL for the Zend Core for Oracle
Administration Console. Take note of the information.

The Zend Core for Oracle installation is now complete.

Testing the Zend Core for Oracle Installation on Linux
To test the Zend Core for Oracle installation on Linux platforms:
1. Configure Apache to use a public virtual directory. As root, edit APACHE_HOME/conf/httpd.conf and

add a comment to the following line:

#UserDir "disable"

89

Figure 69: Zend Core for Oracle further installation
options screen.

Figure 70: Zend Core for Oracle installation successful
screen.

Installing Zend Core for Oracle

2. Then remove the # from the following line:

UserDir public_html

3. As your normal user (not root), create a directory called public_html in your home directory, and
change directory to the newly created directory, enter the following commands in a command
window:

cd $HOME
mkdir public_html
cd public_html

4. Create a file called hello.php that contains the following PHP code:

<?php
echo "Hello world!";
?>

5. Make sure the permissions on any files in the public_html directory, and the directories above it are set
to 755 so the web server can read and execute them.

6. Open a web browser and enter the following URL in your browser:
http://127.0.0.1/~username/hello.php
The line Hello world! appears in the browser. Any errors in your PHP code are displayed as
you have configured PHP to display errors.

Installing Zend Core for Oracle on Windows
To install Zend Core for Oracle on Windows platforms:
1. Download the Zend Core for Oracle. There is a link to the Zend site available on the Oracle

Technology Network at http://otn.oracle.com/php.

2. Log in as a system administrator, or a user with system administrator privileges.

3. Double click on the file named ZendCoreforOracle-2.5.0-Windows-x86.exe to start the Zend Core for
Oracle installation. The Zend Core for Oracle Welcome screen is displayed.

90

http://otn.oracle.com/php

Installing Zend Core for Oracle

4. In the Zend Core for Oracle Welcome screen, click Next. The Zend Core for Oracle License Agreement
screen is displayed.

5. Read and accept the terms of the license, and click Next. The Zend Core for Oracle Setup Type screen
is displayed.

91

Figure 72: Zend Core for Oracle License Agreement
screen.

Figure 71: Zend Core for Oracle Welcome screen.

Installing Zend Core for Oracle

6. On Windows platforms, you can choose to perform a Complete installation, or a Custom installation.
This installation procedure assumes you select the Custom installation. If you prefer, select the
Complete installation for the default install options. Click Next. The Zend Core for Oracle Choose
Destination Location screen is displayed.

7. Specify the location for installing Zend Core for Oracle; accept the default; or enter your preferred
location. Click Next. The Zend Core for Oracle Select Feature screen is displayed.

92

Figure 73: Zend Core for Oracle Setup Type screen.

Figure 74: Zend Core for Oracle Choose Destination
Location screen.

Installing Zend Core for Oracle

8. Select Zend Core PHP and Extensions, Zend Core Administration, and optionally Oracle Instant
Client and Zend Framework. Click Next. The Zend Core for Oracle Web Server Selection screen is
displayed.

9. If you have an Apache install already, select Specify Apache’s location, or if you do not have Apache
installed, select Install Zend Core's bundled Apache 2.2.4. Click Next. If you selected to install Zend
Core's bundled Apache server, the Zend Core for Oracle Apache port number screen is displayed.

93

Figure 76: Zend Core for Oracle Web Server Selection
screen.

Figure 75: Zend Core for Oracle Select Features screen.

Installing Zend Core for Oracle

10. If you have chosen to use an existing Apache install, select the Apache root folder. If you have chosen
to install a new Apache server, select the port number you want Apache to listen on. Click Next. The
Zend Core for Oracle Extension Association screen is displayed.

11. Select the extensions you want to associate with PHP from the check boxes and click Next. The Zend
Core for Oracle Administration Password screen is displayed.

94

Figure 77: Zend Core for Oracle Apache port number
screen.

Figure 78: Zend Core for Oracle Extension Association
screen.

Installing Zend Core for Oracle

12. Enter a password for the Administration Console. Confirm the password and click Next. The Zend
Core for Oracle Zend Network Subscription screen is displayed.

13. On the Zend Network Subscription screen you may optionally enter your Zend network user ID and
password to be able to use the Zend Core Console to track when updates to Zend Core and PHP
components are available. If you have not registered, or do not want to track updates, select No. Click
Next. The Zend Core for Oracle Proxy Configuration screen is displayed.

95

Figure 79: Zend Core for Oracle Administration Password
screen.

Figure 80: Zend Core for Oracle Zend Network
Subscription screen.

Installing Zend Core for Oracle

14. If you use a proxy server to connect to the Internet, select Yes to enter the the proxy server information.
Otherwise, select No. Click Next. The Zend Core for Oracle Ready to Install screen is displayed.

15. Click the Install button to begin the installation. The installer runs through the installation. The Zend
Core for Oracle Installation Complete screen is displayed.

96

Figure 82: Zend Core for Oracle Ready to Install screen.

Figure 81: Zend Core for Oracle Proxy Configuration
screen.

Installing Zend Core for Oracle

16. The final installation page is displayed confirming the installation is complete. Click Finish.
Zend Core for Oracle is installed. You may need to restart Windows if you see that some of the PHP
extensions aren't loaded correctly.

Testing the Zend Core for Oracle Installation on Windows
To test the Zend Core for Oracle installation on Windows platforms:
1. Create a file called hello.php in the Apache C:\Program Files\Apache Group\Apache2\htdocs directory

that contains the following PHP code:

<?php
echo "Hello world!";
?>

2. Open a web browser and enter the following URL in your browser:
http://127.0.0.1/hello.php
The line Hello world! appears in the browser. Any errors in your PHP code are displayed if you
have configured PHP to display errors.

Configuring Zend Core for Oracle
In this section, you configure environment variables and Zend Core directives that control default error
reporting in web pages.
1. Enter the following URL in a web browser to access the Zend Core for Oracle Administration console:

http://127.0.0.1/ZendCore

97

Figure 83: Zend Core for Oracle Installation Complete
screen.

Installing Zend Core for Oracle

2. Enter the GUI password that you provided during Zend Core for Oracle installation. Click the login
>>> icon.

3. Click the Configuration tab to display the configuration options.

4. Click the + icon to expand the Error Handling and Logging configuration entry.

5. Set the display_errors directive to On to enable the display of errors in the HTML script output during
development. Make sure you set this back to Off before you release any applications you build as
users will see the errors and gain information about your system that you otherwise don’t want them
to see or know.

6. Because there are unsaved changes, the "Unsaved configuration" message appears under the page
header. Click Save Settings to save the configuration change.

98

Figure 84: Zend Core for Oracle login screen.

Figure 85: Zend Core for Oracle configuration screen.

Configuring Zend Core for Oracle

7. Because you have made configuration changes, you must restart the Apache web server. Under the
page header notice the "Please Restart Apache" message reminding you to do so. Click Restart Server
to restart the Apache server. If you are using a Windows operating system, you should restart the
Apache server using the Services dialog in Control Panel, or the Apache Monitor in the system tray.

8. Click Logout to exit the Zend Core for Oracle Administration page.

99

Installing Zend Core for Oracle

100

CHAPTER 9

CONNECTING TO ORACLE USING OCI8
This Chapter covers connecting to an Oracle database from your PHP application, including the types of
Oracle connections, environment variables that may affect connections, and tuning your connections. A
later chapter PHP Scalability and High Availability discusses connection pooling and how it applies to
connection management.

Before attempting to connect, review the section Setting Oracle Environment Variables for Apache part way
through this chapter and make sure that your environment is configured appropriately.

The examples use the HR schema, a demonstration user account installed with the database. Use
Application Express or SQL*Plus to unlock the account and set a password, as described in the chapter
Using Oracle Database.

Oracle Connection Types
There are three ways to connect to an Oracle database in a PHP application, using standard connections,
unique connections, or persistent connections. Each method returns a connection resource that is used in
subsequent OCI8 calls.

Standard Connections
For basic connection to Oracle use PHP’s oci_connect() call:

$c = oci_connect($username, $password, $dbname);

You can call oci_connect() more than once in a script. If you do this and use the same username and
database name, then you get a pointer to the original connection.

Multiple Unique Connections
To get a totally independent connection use oci_new_connect():

$c = oci_new_connect($username, $password, $dbname);

Each connection is separate from any other. This lets you have more than one database session open at the
same time. This can be useful when you want to do database operations independently from each other.

Persistent Connections
Persistent connections can be made with oci_pconnect():

$c = oci_pconnect($username, $password, $dbname);

101

Connecting to Oracle Using OCI8

Persistent connections are not automatically closed at the end of a PHP script and remain open in PHP’s
persistent connection cache for reuse in other scripts. This makes oci_pconnect() fast for frequently used
web applications. Reconnection does not require re-authentication to the database.

Each cache entry uses the username, the database name, the character set and the connection privilege
to ensure reconnections are the same as the original.

Limits on the number of persistent connections in the cache can be set, and connections can be
automatically expired to free up resources. The parameters for tuning persistent connections are discussed
later in this chapter.

When the PHP process terminates, the connection cache is destroyed and all database connections
closed. This means that for command line PHP scripts, persistent connections are equivalent to normal
connections and there is no performance benefit.

Oracle Database Name Connection Identifiers
The $dbname connection identifier is the name of the local or remote database that you want to attach to. It
is interpreted by Oracle Net, the component of Oracle that handles the underlying connection to the
database and establishes a connection through to the network “listener” on the database server. The
connection identifier can be one of:

● An Easy Connect string

● A Connect Descriptor string

● A Connect Name

102

Figure 86: Persistent connections are cached in PHP and held open to the database.

Oracle Database Name Connection Identifiers

Easy Connect String
If you are running Oracle Database XE on a machine called mymachine, and the PHP-enabled web server is
on the same machine, you could connect to the HR schema with:

$c = oci_connect('hr', 'hrpwd', 'mymachine/XE');

In this guide, we assume the database is on the same machine as Apache and PHP so we use localhost:

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

Depending on your network configuration, you may need to use the equivalent IP address:

$c = oci_connect('hr', 'hrpwd', '127.0.0.1/XE');

The Easy Connect string is JDBC-like. The Oracle 10g syntax is:

[//]host_name[:port][/service_name]

If PHP links with Oracle 11g libraries, the enhanced 11g syntax can be used:

[//]host_name[:port][/service_name][:server_type][/instance_name]

The prefix // is optional. The port number defaults to Oracle’s standard port, 1521. The service name
defaults to same name as the database's host computer name. The server is the type of process that Oracle
uses to handle the connection, see the chapter on Database Resident Connection Pooling for an example.
The instance name is used when connecting to a specific machine in a clustered environment.

While it is common for Oracle database sites to use port 1521, it is relatively rare that a database will be
installed with the service name set to the host name. You will almost always need to specify the connection
identifier as at least host_name/service_name.

The lsnrctl command on the database server shows the service names that the Oracle Net listener
accepts requests for.

$ lsnrctl services

LSNRCTL for Linux: Version 10.2.0.1.0 - Production on 01-OCT-2008 18:17:10

Copyright (c) 1991, 2005, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC_FOR_XE)))
Services Summary...
Service "PLSExtProc" has 1 instance(s).
 Instance "PLSExtProc", status UNKNOWN, has 1 handler(s) for this service...
 Handler(s):
 "DEDICATED" established:0 refused:0
 LOCAL SERVER
Service "XE" has 1 instance(s).
 Instance "XE", status READY, has 1 handler(s) for this service...
 Handler(s):
 "DEDICATED" established:55 refused:0 state:ready
 LOCAL SERVER
. . .

103

Connecting to Oracle Using OCI8

This shows the service XE is available.
You can use the Easy Connect syntax to connect to Oracle8i, Oracle9i, Oracle10g, and Oracle11g

databases as long as PHP is linked with Oracle 10g or greater libraries. This syntax is usable in Zend Core
for Oracle.

More information on the syntax can be found in the Oracle® Database Net Services Administrator's Guide
11g Release 1 (11.1).

Database Connect Descriptor String
The full Oracle Net connect descriptor string gives total flexibility over the connection.

$db = '(DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)
 (HOST = mymachine.mydomain)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = MYDB.MYDOMAIN)))';

$c = oci_connect($username, $password, $db);

The syntax can be more complex than this example, depending on the database and Oracle Net features
used. For example, by using the full syntax, you can enable features like load balancing and tweak packet
sizes. The Easy Connect syntax does not allow this flexibility.

Database Connect Name
You can store the connect descriptor string in a file called tnsnames.ora and refer to it in PHP using a connect
name:

tnsnames.ora
MYA = (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)
 (HOST = mymachine.mydomain)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = MYDB.MYDOMAIN)))

In PHP you would use the connect name MYA to connect to the database:

$c = oci_connect($username, $password, 'MYA');

PHP needs to be able to find the tnsnames.ora file to resolve the MYA name. The directory paths that Oracle
searches for tnsnames.ora depend on your operating system. On Linux, the search path includes:

$TNS_ADMIN/tnsnames.ora
/etc/tnsnames.ora
$ORACLE_HOME/network/admin/tnsnames.ora

If PHP was compiled using the Oracle libraries in an ORACLE_HOME-style install, then set ORACLE_HOME
before starting the web server. The pre-supplied $ORACLE_HOME/network/admin/tnsnames.ora will then
automatically be found. In Oracle Database XE, $ORACLE_HOME is:

104

Oracle Database Name Connection Identifiers

/usr/lib/oracle/xe/app/oracle/product/10.2.0/server

If PHP was built with Oracle Instant Client, or Zend Core for Oracle is used, then put tnsnames.ora in
/etc, or set TNS_ADMIN to the directory containing it prior to starting the web server.

Make sure Apache has read permissions on tnsnames.ora. In some ORACLE_HOME-style installs, the
default permissions on the file are restrictive.

Common Connection Errors
If Zend Core for Oracle is not used, some environment variables need to be set before starting the web
server. You may also optionally want to set the environment to control Oracle's globalization settings.

Note: Do not set Oracle environment variables in PHP scripts with putenv() because Oracle libraries may be loaded and
initialized before the scripts run.

The OCI8 extension always needs to find Oracle libraries, error message data and optionally needs the
tnsnames.ora file. Not finding the libraries can lead to Apache startup errors (see the Apache error log file)
about OCI8 not being initialized, and to script runtime errors like:

PHP Fatal error: Call to undefined function oci_connect()

This error means that the OCI8 extension is not available. Check that ORACLE_HOME and/or
LD_LIBRARY_PATH on Linux, or PATH on Windows are valid.

Another potential source of problems is having multiple installations of Oracle libraries. Using
mismatched versions of Oracle libraries and files can lead to PHP returning errors such as:

ORA-12705: Cannot access NLS data files or invalid environment specified

or:

OCIEnvNlsCreate() failed. There is something wrong with your system

Users of older versions of OCI8 may see the one of the equivalent errors:

OCIEnvCreate() failed. There is something wrong with your system

or

OCIEnvInit() failed. There is something wrong with your system

This environment initialization problem is common on Windows when multiple Oracle environments are
installed and PHP is not using the correct one. (Some users move the Instant Client DLLs to the Apache or
PHP directory as a quick solution).

If you are using an Oracle Database 10g Release 2 database other than the Express Edition (Oracle
Database XE), you may need to give the Apache process access to Oracle’s libraries and globalization data.
Refer to the $ORACLE_HOME/install/changePerm.sh script in later Oracle patchsets.

If an error like this occurs:

105

Connecting to Oracle Using OCI8

Error while trying to retrieve text for error ORA-12154

it means two problems happened. First, a connection error ORA-12154 occurred. The second problem is the
“Error while trying to retrieve text” message, indicating Oracle’s message files were not found, most likely
because ORACLE_HOME is not correctly set.

The expected description for ORA-12154 is actually:

ORA-12154: TNS:could not resolve service name

indicating that the connection string is not valid, or the tnsnames.ora file (if one is being used) wasn't
readable. The result is that OCI8 does not know which machine to connect to. A similar error:

ORA-12514 TNS:listener does not currently know of service requested in connect
descriptor

means that OCI8 was able to contact a machine hosting Oracle, but the expected database is not running on
that computer. For example, if Oracle Database XE is currently running on your computer and you try to
connect to localhost/abc you will get this error.

The bottom line is that your environment should be set correctly and consistently. The Apache process
must have access to Oracle libraries and configuration files. Environment variables such as $ORACLE_HOME
must be set in the shell that starts Apache.

Setting Oracle Environment Variables for Apache
When you use OCI8, you must set some Oracle environment variables before starting the web server.

If you have environment related problems – unexpected connection errors like those above are typical
– then check the output from the PHP phpinfo() function:

Script 5: phpinfo.php

<?php
phpinfo();
?>

Look at the Environment section (not the Apache Environment section) and make sure the Oracle variables are
set to the values you expect.

The variables needed are determined by how PHP is installed, how you connect, and what optional
settings are desired.

Table 5: Common Oracle environment variables on Linux.

Oracle Environment Variable Purpose
ORACLE_HOME The directory containing the Oracle software. This directory must be

accessible by the Apache process. The variable is not needed if PHP
uses Oracle Instant Client or if Zend Core for Oracle is installed.

106

Setting Oracle Environment Variables for Apache

Oracle Environment Variable Purpose
ORACLE_SID The Oracle Net connect name of the database. Only used when PHP is

on same machine as the database and the connection identifier is not
specified in the PHP connect function. Not used for Oracle Instant
Client or Zend Core for Oracle. Not commonly set for PHP.

LD_LIBRARY_PATH Set this to include the Oracle libraries, for example
$ORACLE_HOME/lib or $HOME/instantclient_11_1. Not needed if the
libraries are located by an alternative method, such as with the
/etc/ld.so.conf linker path file. Zend Core for Oracle sets this variable if
necessary.

NLS_LANG Determines the “national language support” globalization options for
OCI8. See the chapter Globalization for more details. If not set, a default
value will be chosen by Oracle. Setting this is recommended.

TNS_ADMIN The location of the tnsnames.ora and other Oracle Net configuration
files. Only needed if a database connect name from a tnsnames.ora file
is used in the OCI8 connect functions and the tnsnames.ora file is not in
$ORACLE_HOME/network/admin. Not needed if Easy Connect syntax
is being used in the connect functions (unless a sqlnet.ora file is used).

With Oracle Database XE, you can set the shell's environment by using the oracle_env.sh script:

. /usr/lib/oracle/xe/app/oracle/product/10.2.0/server/bin/oracle_env.sh

Note the space after the period. This command allows the script to set the environment of the shell itself.
On other editions of the Oracle database, the /usr/local/bin/oraenv or /usr/local/bin/coraenv scripts set the
environment. Run one of these scripts before starting Apache. You will be prompted for the database to
connect to:

. /usr/local/bin/oraenv
ORACLE_SID = [] ? orcl

If your database is on a remote machine, you will have to set the environment manually.
To simplify things, you may create a script to set the environment and start Apache, for example:

Script 6: start_apache

#! /bin/sh

ORACLE_HOME=/usr/lib/oracle/xe/app/oracle/product/10.2.0/server
LD_LIBRARY_PATH=$ORACLE_HOME/lib:$LD_LIBRARY_PATH
NLS_LANG=AMERICAN_AMERICA.WE8MSWIN1252
export ORACLE_HOME LD_LIBRARY_PATH NLS_LANG
echo "Oracle Home: $ORACLE_HOME"

echo Starting Apache
#export > /tmp/envvars # uncomment to debug

107

Connecting to Oracle Using OCI8

/usr/sbin/apachectl start

On Oracle Enterprise Linux, instead of creating a shell script to call apachectl, you can add environment
variables to the end of /etc/sysconfig/httpd:

...
export ORACLE_HOME=/usr/lib/oracle/xe/app/oracle/product/10.2.0/server
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ORACLE_HOME/lib
export NLS_LANG=AMERICAN_AMERICA.WE8MSWIN1252

Some Apache 2 installations use an “envvars” script in the Apache bin directory to set variables. Using
Apache's SetEnv directive is sometimes insufficient. The important thing is to set the environment before
Apache loads any Oracle library.

If Apache is started automatically when your machines boots, you will need to make sure Apache has
the environment set at boot time.

Note: Do not set Oracle environment variables in PHP scripts with putenv(). The web server may load Oracle libraries and
initialize Oracle data structures before running your script. Using putenv() causes hard to track errors as the behavior is not
consistent for all variables, web servers, operating systems, or OCI8 functions. Variables should be set prior to Apache starting.

Zend Core for Oracle is automatically configured to use Oracle Instant Client. As part of the install, it
modifies /usr/local/Zend/apache2/bin/envvars to add LD_LIBRARY_PATH. The envvars file is called by apachectl.
Make sure you preserve this file inclusion if you later modify the apachectl script. The Oracle environment
variables you may want to set explicitly for Zend Core for Oracle are NLS_LANG and TNS_ADMIN.

If PHP was built with Oracle Instant Client, it can be convenient to create a file
/etc/ld.so.conf.d/instantclient.conf containing the path to the Instant Client libraries:

/usr/lib/oracle/11.1.0.1/client/lib

Run ldconfig to rebuild the system's library search path. Only do this if there is no other Oracle software
in use on the machine. The removes the need to set LD_LIBRARY_PATH everywhere, but upgrading
requires remembering to change the path.

If you have multiple versions of Oracle installed, you might be able to use LD_PRELOAD or equivalent to
force Apache to load the desired Oracle libclntsh.so file. PHP should be run using the same version of the
Oracle libraries as were used to build the PHP library and executables.

Closing Oracle Connections
At the end of each script, connections opened with oci_connect() or oci_new_connect() are
automatically closed. You can also explicitly close them by calling:

oci_close($c);

Any uncommitted data is rolled back. The function has no effect on persistent connections. (See the chapter
on connection pooling for caveats).

108

Closing Oracle Connections

If a long running script only spends a small amount of time interacting with the database, close
connections as soon as possible to free database resources for other users. When the Apache or PHP
command line process terminates, all database connections are closed.

The oci_close() function was a “no-op” prior to the re-factoring of OCI8. That is, it had no
functional code, and never actually closed a connection. You could not explicitly close connections even if
you wanted to! You can revert to this old behavior with a php.ini setting:

oci8.old_oci_close_semantics = On

Close Statement Resources Before Closing Connections
The oci_close() function works by reference counting. Only when all PHP references to the database
connection are finished will it actually be closed and database resources freed. This example shows the
effect of reference counting:

Script 7: close.php

<?php

$c = oci_connect("hr", "hrpwd", "localhost/XE");
$s = oci_parse($c, "select * from locations");
oci_execute($s);
oci_fetch_all($s, $res);

// oci_free_statement($s);
oci_close($c);

echo "Sleeping . . .";
sleep(10);
echo "Done";

?>

While close.php is sleeping, if you query as a privileged user:

SQL> select username from v$session where username is not null;

you will see that HR is still shown as connected until the sleep() finishes and the script terminates. This is
because the oci_parse() call creating the statement resource $s internally increases the reference count
on $c. The database connection is not closed until PHP's end-of-script processing destroys $s.

An oci_free_statement($s) call will explicitly decrease the reference count on $c allowing the
oci_close() to have an immediate effect. If this freeing call is uncommented in the example, the
SQL*Plus query will show the database connection was explicitly closed before the sleep() starts.

Variables and other kinds of resources may also increase the reference count on a connection, and in
turn have their own reference count which must be zero before they can destroyed. The reference count
will decrease if the variables goes out of scope or are assigned new values. A common idiom is to assign
null to the statement resource:

$s = null;

109

Connecting to Oracle Using OCI8

In the next example, $c1 and $c2 are the one database connection (because oci_connect() returns the
same connection resource when called more than once in a script). The physical database connection is
released only when $c1 and c2 are both closed. Also the statement resource must be freed, which happens
automatically when do_query() completes and $s goes out of scope.

Script 8: close2.php

<?php

function do_query($c, $query)
{
 $s = oci_parse($c, $query);
 oci_execute($s);
 oci_fetch_all($s, $res);
 echo "<pre>";
 var_dump($res);
 echo "</pre>";
}

$c1 = oci_connect('hr', 'hrpwd', 'localhost/XE');
$c2 = oci_connect('hr', 'hrpwd', 'localhost/XE'); // Reuses $c1 DB connection

do_query($c1, 'select user from dual'); // Query 1 works
oci_close($c1); // DB connection doesn't get closed
do_query($c1, 'select user from dual'); // Query 2 fails
do_query($c2, 'select user from dual'); // Query 3 works
oci_close($c2); // DB connection is now closed

?>

Variable $c1 is not usable after oci_close($c1) is executed: PHP has dissociated it from the connection.
The script outcome is that the first and third queries succeed but the second one fails.

Transactions and Connections
Uncommitted data is rolled back when a connection is closed or at the end of a script. For
oci_pconnect() this means subsequent scripts reusing a cached database connection will not see any
data that should not be shared.

Avoid letting database transactions remain open if a second oci_connect() or oci_pconnect() call
with the same user credentials is executed within a script, or if oci_close() is used. Making sure data is
committed or rolled back first can prevent hard to debug edge cases where data is not being stored as
expected.

The next chapter covers database transactions in detail.

Session State with Persistent Connections
It is possible for a script to change session attributes for oci_pconnect() that are not reset at the end of
the script. (The Oracle term session is effectively the same as the PHP term connection). One example is the
globalization setting for the date format:

110

Closing Oracle Connections

$c = oci_pconnect("hr", "hrpwd", "localhost/XE");
do_query($c, "select sysdate from dual");
$s = oci_parse($c, "alter session set nls_date_format=’YYYY-MM-DD HH24:MI:SS’");
$r = oci_execute($s);
do_query($c, "select sysdate from dual");

The first time this is called in a browser, the two dates returned by the queries are:

18-APR-07
2007-04-18 14:21:09

The first date has the system default format. The second is different because the ALTER SESSION
command changed the date format.

Calling the script a second time gives:

2007-04-18 14:21:10
2007-04-18 14:21:10

The persistent connection has retained the session setting and the first query no longer uses the system
default format. This only happens if the same Apache process serves both HTTP requests. If a new Apache
process serves the second request then it will open a new connection to the database, which will have the
original default date format. (Also the system will have two persistent connections left open instead of
one.)

Session changes like this may not be a concern. Your applications may never need to do anything like
it, or all connections may need the same values anyway. If there is a possibility incorrect settings will be
inherited, make sure your application resets values after connecting.

Optional Connection Parameters
The oci_connect(), oci_new_connect() and oci_pconnect() functions take an optional extra two
parameters:

● Connection character set

● Connection session mode

Connection Character Set
The character set is a string containing an Oracle character set name, for example, JA16UEC or AL32UTF8:

$c = oci_connect("hr", "hrpwd", "localhost/XE", 'AL32UTF8');

When not specified or NULL, the NLS_LANG environment variable setting is used. This setting determines
how Oracle translates data when it is transferred from the database to PHP. If the database character set is
not equivalent to the OCI8 character set, some data may get converted abnormally. It is recommended to
set this parameter to improve performance and guarantee a known value is used.

Oracle Database XE is available in two distributions, one with a database character set of
WE8MSWIN1252 and the other of AL32UTF8 (Oracle's name for UTF-8).

111

Connecting to Oracle Using OCI8

It is up to your application to handle returned data correctly, perhaps by using PHP’s mb_string,
iconv or intl extensions. Globalization is discussed in more detail in the Globalization chapter.

Connection Session Mode
The session mode parameter allows privileged or externally authenticated connections to be made.

Connection Privilege Level
The OCI8 extension allows privileged SYSDBA and SYSOPER connections. Privileged connections are
disabled by default. They can be enabled in php.ini using:

oci8.privileged_connect = 1

The SYSDBA and SYSOPER privileges give you the ability to change the state of the database, perform data
recovery, and even access the database when it has not fully started. Be very careful about exposing this on
customer facing web sites, that is, do not do it! It might be useful for command line PHP scripts in very
special circumstances.

When you installed Oracle, the sys administrative user account was automatically created with the
password that you supplied. All base tables and views for the database data dictionary are stored in the
SYS schema – they are critical for the operation of Oracle. By default, the SYSDBA privilege is assigned
only to user sys, but it and SYSOPER can manually be granted to other users.

Operating System Authenticated Privileged Connections
You can have the operating system perform the authentication for privileged connections based around the
user that is running the web server system process. An operating system authenticated privileged
connection is equivalent to the SQL*Plus connection:

$ sqlplus / as sydba

For / as sysdba access (where no username and password is used) in PHP, all these must be true:

● The operating system process user is run as a member of the OS dba group

● PHP is linked with the ORACLE_HOME software (that is, not Oracle Instant Client, or Zend Core for
Oracle) that the database is using

● The database is your default local database, for example, specified by the ORACLE_SID environment
variable

This would be typically be done by compiling and running PHP with the Oracle libraries used by the
database.

Scripts that contain operating system authenticated privileged connection calls will connect
successfully:

$c = oci_connect("/", "", null, null, OCI_SYSDBA);

112

Optional Connection Parameters

If PHP is invoked by Apache, the library path needs to contain the same Oracle libraries. Also the nobody
user must be in the privileged Oracle group, for example, in the operating system dba group. This is not
recommended.

Similarly, AS SYSOPER access is available for members of the oper group. In PHP use OCI_SYSOPER in
oci_connect().

On Windows, the operating system groups are called ORA_DBA and ORA_OPER.

Remote Privileged Access
With Zend Core for Oracle and any other PHP based on Oracle Instant Client, a username and password
must be given when connecting. These connections are considered “remote” from the database because the
libraries used by PHP are not those used by the running database.

Remote users can make privileged connections only when they have been given the appropriate Oracle
access. In SQL*Plus a privileged session would be started like:

$ sqlplus username/password@sid as sysdba

The database will not permit the (possibly physically) “remote” operating system to authorize access. An
extra Oracle password file needs to be created and a password needs to be used in the database connection.

To set up a password file, check the database initialization parameter remote_login_passwordfile
is EXCLUSIVE. This is the default value. To do this, log in to the operating system shell as the Oracle
database software owner, and start SQL*Plus:

$ sqlplus / as sysdba

SQL> show parameter remote_login_passwordfile

NAME TYPE VALUE
----------------------------- ----------- ------------
remote_login_passwordfile string EXCLUSIVE

A setting of EXCLUSIVE means the password file is only used with one database and not shared among
several databases on the host, and enables you to have multiple users connect to the database as
themselves, and not just as sys. If this parameter is not set to EXCLUSIVE, you can change the value with the
SQL*Plus and enter a command similar to the following command:

SQL> alter system set remote_login_passwordfile='exclusive'
 2 scope=spfile sid='*';

From the operating system shell, create an Oracle password file:

$ $ORACLE_HOME/bin/orapwd file=$ORACLE_HOME/dbs/acct.pwd \
> password=secret entries=10

This creates a password file named acct.pwd that allows up to 10 privileged users with different passwords
(this number can be changed later). The file is initially created with the password secret for users connecting
with the username sys.

To add a new user to the password file use SQL*Plus:

SQL> create user c1 identified by c1pw;

113

Connecting to Oracle Using OCI8

SQL> grant connect to c1;
SQL> grant sysdba to c1;
SQL> select * from v$pwfile_users;
USERNAME SYSDBA SYSOPER
------------------------------ ------ -------
SYS TRUE TRUE
C1 TRUE FALSE

Now in PHP you can use the following connection command:

$c = oci_connect("c1", "c1pw", 'localhost/XE', null, OCI_SYSDBA);

One feature of a privileged connection is that if you issue a SELECT USER FROM DUAL statement, any
OCI_SYSDBA connection will show the user as sys not c1. A connection made with OCI_SYSOPER will show
a user of public.

External Authentication
OCI8 1.3 supports Oracle External Authentication. Instead of storing a username and password in PHP
scripts and authenticating against a username and password stored in the database, credentials can be
authenticated by an outside system such as Oracle Wallet. The operating system user running the Apache
process could be granted read access to the wallet using Access Control Lists.

To use external authentication, first configure the database to use an external authentication method.
Refer to Oracle documentation for details.

In OCI8, pass the flag OCI_CRED_EXT as the session_mode parameter to oci_connect(),
oci_new_connect() or oci_pconnect():

$c = oci_connect("/", "", $db, null, OCI_CRED_EXT);

OCI_CRED_EXT can only be used with username of "/" and a empty password. The php.ini parameter
oci8.privileged_connection may be On or Off.

The flag may be combined with the existing OCI_SYSOPER or OCI_SYSDBA modes. For example:

$c = oci_connect("/", "", $db, null, OCI_CRED_EXT+OCI_SYSOPER);

Note: oci8.privileged_connection needs to be On for OCI_SYSDBA and OCI_SYSOPER use.
The external authentication feature is not available in OCI8 on Windows for security reasons.

Changing the Database Password
The OCI8 extension allows Oracle database passwords to be changed.

Changing Passwords On Demand
After connecting, a password can be changed with oci_password_change():

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');
oci_password_change($c, 'hr', 'hrpwd', 'newhrpwd');

Subsequent scripts may now connect using:

114

Changing the Database Password

$c = oci_connect('hr', 'newhrpwd', 'localhost/XE');

Changing Expired Passwords
Sometimes connection may fail because the password is no longer valid. For example, the DBA may have
set a password policy to expire passwords at a certain time by using CREATE PROFILE, or may have
expired a password immediately with ALTER USER forcing the user to choose a new password the very
first time they connect. When the user tries to connect, their password is recognized but they get an
ORA-28001: the password has expired message and will not be able to complete their log on. In this
case, instead of the user having to bother the DBA to manually reset the expired password,
oci_password_change() can be used to re-connect and change the password one operation. The next
example shows this in action.

Script 9: connectexpired.sql

drop user peregrine cascade;
create user peregrine identified by abc;
grant create session to peregrine;
alter user peregrine password expire;

Script 10: connectexpired.php

<?php

$un = "peregrine"; // New temporary user to be created.
$pw = "abc"; // Initial password for $un
$db = "localhost/XE"; // Database to connect to

function do_connect($un, $pw, $db)
{
 echo "Calling oci_connect()
\n";
 $c = oci_connect($un, $pw, $db);
 if ($c) {
 echo "Connected successfully
\n";
 }
 else {
 $m = oci_error();
 if ($m['code'] == 28001) {
 // Connect and change the password to a new one formed by
 // appending 'x' to the original password.
 // In an application you could prompt the user to choose
 // the new password.
 echo "Connection failed: the password for $un has expired
\n";
 $c = change_and_connect($un, $pw, $pw."x", $db);
 }
 else {
 echo "Error: ", $m["message"], "
\n";
 exit;
 }
 }

115

Connecting to Oracle Using OCI8

 return($c);
}

function change_and_connect($un, $pw1, $pw2, $db)
{
 echo "Calling oci_password_change() to connect
\n";
 $c = oci_password_change($db, $un, $pw1, $pw2);
 if (!$c) {
 $m = oci_error();
 echo "Error: ", $m["message"], "
\n";
 }
 else {
 echo "Connected and changed password to $pw2
\n";
 }
 return($c);
}

function show_user($c)
{
 $s = oci_parse($c, "select user from dual");
 oci_execute($s);
 oci_fetch_all($s, $res);
 echo "You are connected as {$res['USER'][0]}
\n";
}

// Connect as $un and confirm connection succeeded
$c = do_connect($un, $pw, $db);
show_user($c);

?>

Before running the PHP script, first run connectexpired.sql as a privileged user:

$ sqlplus system/systempwd@localhost/XE @connectexpired.sql

When oci_connect() in do_connect() fails with an ORA-28001 error, change_and_connect() is
called to change the password and connect in a single step. In this example, the new password is simply
formed by concatenating an “x” to the current password. In an application, the user would be prompted
for the new password.

The output of connectexpired.php is:

Calling oci_connect()
Connection failed: the password for peregrine has expired
Calling oci_password_change() to connect
Connected and changed password to abcx
You are connected as PEREGRINE

The password change call oci_password_change($db, $un, $pw1, $pw2); differs from the example
in the previous section Changing Passwords On Demand in that it passes a database connection identifier
identifier, localhost/XE, as the first parameter instead of passing the connection resource of an already
opened connection. This new usage connects to the database and changes the password to $pw2 all at the
same time. Subsequent scripts will be able to connect using the new password.

This method of connecting with oci_password_change() also works if the password has not expired.

116

Tuning Oracle Connections in PHP

Tuning Oracle Connections in PHP
Connections to Oracle can be tuned by changing the way OCI8 calls are made, by changing the network
configuration, or by tuning the database.

Use the Best Connection Function
Using oci_pconnect() makes a big improvement in overall connection speed of frequently used
applications because it uses the connection cache in PHP. A new, physical connection to the database does
not have to be created if one already exists in PHP’s cache. However if currently unused, open persistent
connections consume too much memory on the database server, consider tuning the timeout parameters or
using connection pooling.

Pass the Character Set
Explicitly passing the client character set name as the fourth parameter to the connection functions
improves performance:

$c = oci_connect("hr", "hrpwd", "localhost/XE", 'WE8DEC');

If you do not enter a character set, PHP has to determine a client character set to use. This may involve a
potentially expensive environment lookup. Use the appropriate character set for your requirements.

Do Not Set the Date Format Unnecessarily
You can often remove ALTER SESSION statements used after connecting. For example, if your connection
routine always sets the date format:

function my_connect($un, $pw, $db)
{
 $c = oci_pconnect($un, $pw, $db);
 $s = oci_parse($c,
 "alter session set nls_date_format='YYYY-MM-DD HH24:MI:SS'");
 oci_execute($s);
 return $c;
}

One way to optimize this is to simply set the environment variable NLS_DATE_FORMAT in the shell that
starts the web server. Each PHP connection will have the required date format automatically.

Sometimes different database users should have different session values so setting NLS_DATE_FORMAT
globally is not possible. When oci_connect() is called multiple times in the one script or when persistent
connections are used, the ALTER SESSION can be moved to a logon trigger. This is because session settings
are retained in cached connections. Using a trigger means the date format is only set when the physical
database connection is created the first time. The trigger does not fire when subsequent connect calls return
a cached connection.

A logon trigger can be created using SQL*Plus by connecting as a privileged database user:

$ sqlplus system/systempwd@localhost/XE

117

Connecting to Oracle Using OCI8

Then run logontrig.sql:

Script 11: logontrig.sql

create or replace trigger my_set_date after logon on database
begin
 if (user = 'HR') then
 execute immediate
 'alter session set nls_date_format = ''YYYY-MM-DD HH24:MI:SS'' ';
 end if;
end my_set_date;
/

This trigger sets the session’s date format every time hr connects to the database from any client tool. Note
the use of single quotes. The date format string is enclosed in a pair of two quotes, which is the Oracle
method of nesting single quotes inside a quoted string.

In PHP, the connection function can simply become:

function my_connect($un, $pw, $db)
{
 $c = oci_pconnect($un, $pw, $db);
 return $c;
}

Oracle does all the work setting the date format when the physical database connection is originally
established and first used. When PHP later uses a cached connection it will already have the desired date
format.

$c = my_connect('hr', 'hrpwd', 'localhost/XE');
$s = oci_parse($c, 'select sysdate from dual');
oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC);
echo $row['SYSDATE'] . "
\n";

This connects as hr and queries the current date. It shows the new format set by the trigger:

2007-05-04 13:50:35

If the connection is any user other than hr the standard default date format will be displayed:

04-MAY-07

Using a trigger like this only works when the required session setting is the same for all PHP application
users that share the same database user name.

If you cannot use a trigger because each PHP invocation needs different settings, and you need more
than one session value changed, you can put the statements inside a PL/SQL procedure. After connecting
you can call the PL/SQL procedure, which is one oci_execute() call to the database, instead of multiple
calls to execute ALTER SESSION statements.

The suggested practice is to use LOGON triggers only for setting session attributes and not for executing
per PHP-connection logic such as custom logon auditing.

118

Managing Persistent Connections

Managing Persistent Connections
Persistent connections are great if the cost of opening a connection is high. What you consider high
depends on your application requirements and on implementation issues such as whether the web server
and database are on the same host, which will affect the time taken to establish a connection, and on
memory availability. The drawback is persistent connections use Oracle resources even when no one is
accessing the application or database. And if Apache spawns a number of server processes, each of them
may have its own set of connections to the database. The proliferation of connections can be controlled to
some extent with php.ini directives and Apache configuration settings.

The chapter PHP Scalability and High Availability discusses connection pooling in Oracle Database 11g
which provides an advanced solution to connection management.

Maximum Number of Persistent Connections Allowed

oci8.max_persistent

This parameter limits the number of persistent connections cached by each Apache-PHP process. It is a not
a system-wide restriction on database usage. When the limit is reached by a PHP process, all
oci_pconnect() calls are treated like oci_connect() calls and are closed at the end of the script. Setting
it to -1 (the default) means there is no limit. If your PHP scripts connect using the same database
credentials, each PHP process will only have one connection entry in its cache.

Timeout for Unused Persistent Connections

oci8.persistent_timeout

This parameter is the length in seconds that an Apache process maintains an idle persistent connection.
Setting this parameter to -1 (the default) means there is no timeout. If a connection has been expired, the
next time oci_pconnect() is called a new connection is created. It is not an asynchronous timer.

The expiry check happens whenever any PHP script finishes, regardless of whether OCI8 calls were
made. This is an unresolvable weakness with PHP: you want idle connections to be closed, but if PHP is
idle then no scripts execute and the timeout is not triggered. Luckily Oracle 11g connection pooling makes
this issue irrelevant.

Pinging for Closed Persistent Connections

oci8.ping_interval

There is no guarantee that the connection descriptor returned by oci_pconnect() represents a usable
connection to the database. During the time PHP stored an unaccessed connection resource in its cache, the
connection to the database may have become unusable due to a network error, a database error, or being
expired by the DBA. If this happens, oci_pconnect() appears to be successful but an error is thrown
when the connection is later used, for example in oci_execute(). The ping interval is an easy way to
improve connection reliability for persistent connections.

119

Connecting to Oracle Using OCI8

This parameter is the number of seconds that pass before OCI8 does a ping during a oci_pconnect()
call. If the ping determines the connection is no longer usable, a new connection is transparently created
and returned by oci_pconnect(). To disable pinging, set the value to -1. When set to 0, PHP checks the
database each time oci_pconnect() is called. The default value is 60 seconds.

Regardless of the value of oci8.ping_interval, oci_pconnect() will always check an internal
Oracle client-side value to see if the server was known to be available the last time anything was received
from the database. This is a quick operation. Setting oci8.ping_interval physically sends a message to
the server, causing a “round-trip” over the network. This is a “bad thing” for scalability.

Good application design gracefully recovers from failures. In any application there are a number of
potential points of failure including the network, the hardware and user actions such as shutting down the
database. Oracle itself may be configured to close idle connections and release their database resources.
The database administrator may have installed user profiles with CREATE PROFILE IDLE_TIMEOUT, or
the Oracle network layer may time out the network.

You need to balance performance (no pings) with having to handle disconnected Oracle sessions (or
other changes in the Oracle environment) in your PHP code. For highest reliability and scalability it is
generally recommended that you do not use oci8.ping_interval, but do error recovery in your
application code.

Apache Configuration Parameters
You can also tune Apache to kill idle processes, which will also free up Oracle resources used by persistent
connections. Table 6 lists the Apache configuration parameters that can be used to tune PHP.

Table 6: Apache configuration parameters.

Parameter Purpose
MaxRequestsPerChild Sets how many requests Apache will serve before restarting.

MaxSpareServers Sets how many servers to keep in memory that are not handling requests.

KeepAlive Defines whether Apache can serve a number of documents to the one user
over the same HTTP connection.

Setting MaxRequestsPerChild too low will cause persistent connections to be closed more often than
perhaps necessary, removing any potential performance gain of caching. Many sites use
MaxRequestsPerChild to restart PHP occasionally, avoiding any potential memory leaks or other
unwanted behaviors.

John Coggeshall’s article Improving Performance Through Persistent Connections discusses Apache
configuration in more depth.

Reducing Database Server Memory Used By Persistent Connections
There are several techniques that can be used if database server memory is limited but persistent
connections are required for performance.

120

Managing Persistent Connections

● Use Oracle Database 11g connection pooling. See the chapter on PHP Scalability and High Availability.

● Set oci8.persistent_timeout.

● Expire Apache processes with Apache configuration parameters.

● Reduce the number of database user credentials used by the application.

Each persistent connection that uses a different set of credentials will create a separate process on the
database host. If the application connects with a large number of different schemas, the number of
persistent connections can be reduced by connecting as one user who has been granted permission to
the original schemas' objects.

The application can either be recoded to use explicit schema names in queries:

select * from olduser.mytable;

Or, if the application is large, the first statement executed can set the default schema. Subsequent
queries will return:

 alter session set current_schema = olduser;
 select * from mytable;

Setting the default schema this way requires an extra database operation but, depending on the
application, it may be bundled in a PL/SQL block that does other operations.

Oracle Net and PHP
Oracle Net has sophisticated control over network connection management for basic connectivity,
performance and features such as encryption of network traffic between PHP and the database. This
section gives an overview of some Oracle Net features of interest to PHP applications. Tuning the OS,
hardware and TCP/IP stack will also substantially help improve performance and scalability.

Some of the Oracle Net settings are configured in a file called sqlnet.ora that you can create. For PHP, it
should be put in the same directory as the tnsnames.ora file if you use one. Otherwise, set the TNS_ADMIN
environment variable to the directory containing sqlnet.ora. The database server can also have a sqlnet.ora
file, which should be in $ORACLE_HOME/network/admin. This directory on the database server also
contains listener.ora, a file automatically created during database installation, which configures the Oracle
Network listener process.

Connection Rate Limiting
Large sites that have abnormal spikes in the number of users connecting can prevent database host CPU
overload by limiting the rate that connections can be established. The database listener.ora file can specify a
RATE_LIMIT clause to set the maximum number of requests per second that will be serviced:

 LISTENER=(ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales)(PORT=1521)(RATE_LIMIT=4))

121

Connecting to Oracle Using OCI8

The value will depend on the hardware in use.

Setting Connection Timeouts
From Oracle 10.2.0.3 onwards, you can specify a connection timeout in case there is network problem. This
lets PHP return an Oracle error to the user faster, instead of appearing to “hang”. Set
SQLNET.OUTBOUND_CONNECT_TIMEOUT in the client side (the PHP-side) sqlnet.ora file. This sets the upper
time limit for establishing a connection right through to the database, including the time for attempts to
connect to other database services.

In Oracle 11g, a slightly lighter-weight solution TCP.CONNECT_TIMEOUT was introduced. It is also a
sqlnet.ora parameter. It bounds just the TCP connection establishment time, which is mostly where
connection problems occur.

Configuring Authentication Methods
There are many ways to configure connection and authentication. For example a connection:

$c = oci_connect("hr", "hrpwd", "abc");

could be evaluated by Oracle 10g as using the Easy Connect syntax to host machine abc (using the default
port and database service) or using a net alias abc configured in a tnsnames.ora file.

The flexibility can cause a delay in getting an error back if the connection details are invalid or a
database is not operational. Both internal connection methods may be tried in sequence adding to the time
delay before a PHP script gets the error. This depends on your Oracle Net and DNS settings.

How Oracle is configured to authenticate the user’s credentials (here a username and password) can
also have an effect.

The issue is not specific to PHP. In SQL*Plus the connection:

$ sqlplus hr/hrpwd@abc

would be the same.
In a basic Oracle 10g or 11g installation, one way to return an error as soon as possible is to set this in

your OCI8 sqlnet.ora file:

NAMES.DIRECTORY_PATH = (TNSNAMES)
SQLNET.AUTHENTICATION_SERVICES = (NONE)

This DIRECTORY_PATH value disables Easy Connect’s hostname:port/service syntax. Instead of using
Easy Connect syntax, a connect name and tnsnames.ora file would be needed. (This may also add a small
measure of security if your scripts accidentally allow arbitrary connection identifiers. It stops users
guessing database server hostnames they should not know about.)

Setting AUTHENTICATION_SERVICES to NONE stops different authentication methods being tried.
Although this may prevent privileged database connections, which require operating system authorization,
this, again, might be beneficial. Check the Oracle Net documentation for details and for other
authentication methods and authentication-type specific timeout parameters.

122

Oracle Net and PHP

Detecting Dead PHP Apache Sessions
If a PHP Apache process hangs, its database server process will not be closed. This will not prevent other
PHP processes from continuing to work, unless a required lock was not released.

The TCP Keepalive feature will automatically detect unusable connections based on the operating
system timeout setting, which is typically some hours. This detection is enabled on the database server by
default.

Oracle Net itself can also be configured to detect dead connections. This is configured by
SQLNET.EXPIRE_TIME in the database sqlnet.ora. A starting recommendation is to set it to 10 minutes. If a
dead or terminated connection is identified, the server process exits.

Both settings will use some resources. Avoid setting them too short, which may interrupt normal user
activity.

Other Oracle Net Optimizations
Oracle Net lets you tune a lot of other options too. Check the Oracle Net Services Administrator’s Guide and
the Oracle Net Services Reference for details and more features. A few tips are mentioned below.

The best session data unit size will depend on the application. An 8K size (the new default in Oracle
11g) is suitable for many applications. If LOBs are used, a bigger value might be better. It should be set the
same value in both the database server sqlnet.ora and the OCI8 tnsnames.ora file.

For sites that have a large number of connections being made, tune the QUEUESIZE option in the
listener.ora file.

Keeping the PATH short for the oracle user on the database machine can reduce time for forking a
database server process. This is of most benefit for standard PHP connections. Reducing the number of
environment variables also helps.

Tracing Oracle Net
Sometimes your network is the bottleneck. If you suspect this is the case, turn on Oracle Net tracing in your
OCI8 sqlnet.ora file and see where time is being spent. The example sqlnet.ora in $ORACLE_HOME/network/
admin/sample has some notes on the parameters that help. For example, with a USER level trace in sqlnet.ora:

trace_level_client = USER
trace_directory_client = /tmp

And the PHP code:

$c = oci_connect("hr", "hrpwd", "#c"); // invalid db name

The trace file, for example /tmp/cli_3232.trc, shows:

...
[10-MAY-2006 09:54:58:100] nnftmlf_make_system_addrfile: system names file is ...
[10-MAY-2006 09:55:00:854] snlinGetAddrInfo: Name resolution failed for #c
...

123

Connecting to Oracle Using OCI8

The left hand column is the timestamp of each low level call. Here, it shows a relatively big time delay
doing name resolution for the non-existent host #c. The cause is the configuration of the machine network
name resolution.

The logging infrastructure of Oracle 11g changed significantly. Look for tracefiles in a sub-directory of
the Oracle diagnostic directory, for example in $HOME/oradiag_cjones/diag/clients/user_cjones for command
line PHP. For Oracle Net log files created by a web server running PHP, look in /root/oradiag_root if no other
path was configured.

Connection Management in Scalable Systems
Oracle achieved its well-known scalability in part through a multi-threaded architecture. PHP instead has a
multi-process architecture. This difference means care is required when designing scalable applications.

Using persistent connections is common for web sites that have high numbers of connections being
established. Reusing a previously opened connection is significantly faster than opening a fresh one. Large
sites should benchmark Oracle Shared Servers also known as “Multi Threaded Servers” (MTS), and Oracle
11g connection pooling. See the chapter PHP Scalability and High Availability.

Make sure that you understand the lifetime of your applications connections. Reuse connections where
possible, but do not be afraid to create new connections. Close connections when no longer needed. Each
connection will take some Oracle memory, so overall load can be reduced if idle connections are closed
with Apache process timeouts or with the php.ini parameters to expire persistent connections.

For sites with hundreds of connections a second, tune the cache size of an internal sequence generator,
sys.audses$. A starting point is to change it to perhaps 10000:

SQL> alter sequence sys.audses$ cache 10000;

This is also recommended if you are using Oracle RAC (“Real Application Clusters”). For both RAC and
non-RAC database, the DBMS_SERVICE package lets you specify workload management goals. This is a
detailed topic; refer to Oracle’s manuals for more information.

Finally, make sure that your applications are as efficient as possible. This minimizes the length of time
connections are held.

124

CHAPTER 10

EXECUTING SQL STATEMENTS WITH
OCI8

This Chapter discusses using SQL statements with the PHP OCI8 extension, including how statements are
executed, the functions available, transactions, tuning queries, and some useful tips and tricks.

SQL Statement Execution Steps
Queries using the OCI8 extension follow a model familiar in the Oracle world: parse, execute and fetch.
Statements like CREATE and INSERT require only parsing and executing. Parsing is really just a preparatory
step, since Oracle’s actual text parse can occur at the execution stage. You can optionally bind local values
into a statement similar to the way you use %s print format specifications in strings. This improves
performance and security. You can also define where you want the results to be stored, but almost all scripts
let the OCI8 fetch functions take care of this.

The possible steps are:
1. Parse: Prepares a statement for execution.

2. Bind: Optionally lets you bind data values, for example, in the WHERE clause, for better performance
and security.

3. Define: Optional step allowing you to specify which PHP variables will hold the results. This is not
commonly used.

4. Execute: The database processes the statement and buffers any results.

5. Fetch: Gets any query results back from the database.
There is no one-stop function to do all these steps in a single PHP call, but it is trivial to create one in your
application and you can then add custom error handling requirements.

To safeguard from run-away scripts, PHP will terminate if a script takes longer than 30 seconds. If your

SQL statements take longer, change the php.ini parameter max_execution_time or use the
set_time_limit() function. You may also need to alter the configuration of your web server.

Similarly, if you are manipulating large amounts of data, you may need to increase the php.ini
parameter memory_limit, which caps the amount of memory each PHP process can consume.

Query Example
A basic query in OCI8 is:

Script 12: query.php

<?php

125

Executing SQL Statements With OCI8

$c = oci_connect("hr", "hrpwd", "localhost/XE");

$s = oci_parse($c, 'select city, postal_code from locations');
oci_execute($s);
print '<table border="1">';
while ($row = oci_fetch_array($s, OCI_NUM+OCI_RETURN_NULLS)) {
 print '<tr>';
 foreach ($row as $item)
 print '<td>'.htmlentities($item).'</td>';
 print '</tr>';
}
print '</table>';

oci_free_statement($s);

?>

The output from the script query.php is:

In PHP, single and double quotes are used for strings. Strings with embedded quotes can be made by
escaping the nested quotes with a backslash, or by using both quoting styles. The next example shows
single quotes around the city name. To make the query a PHP string it, therefore, must enclosed in double
quotes:

$s = oci_parse($c, "select * from locations where city = 'Sydney'");

PHP 5.3 introduces a NOWDOC syntax that is useful for embedding quotes and dollar signs in strings, such as
this example that queries one of Oracle's administration views V$SQL:

$sql = <<<'END'
select parse_calls, executions from v$sql
END;

126

Figure 87: Output from query.php.

SQL Statement Execution Steps

$s = oci_parse($c, $sql);
. . .

Freeing Statements
In long scripts it is recommended to close statements when they are complete:

oci_free_statement($s);

This allows resources to be reused efficiently. For brevity, and because the examples execute quickly, most
code snippets in this book do not follow this practice.

Oracle Datatypes
Each column has a datatype, which is associated with a specific storage format. The common built-in
Oracle datatypes are:

● CHAR

● VARCHAR2

● NUMBER

● DATE

● TIMESTAMP

● INTERVAL

● BLOB

● CLOB

● BFILE

● XMLType

The CHAR, VARCHAR2, NUMBER, DATE, TIMESTAMP and INTERVAL datatypes are stored directly in
PHP variables. BLOB, CLOB, and BFILE datatypes use PHP descriptors and are shown in the Using Large
Objects in OCI8 chapter. XMLTypes are returned as strings or LOBs, as discussed in the Using XML with
Oracle and PHP chapter. Oracle's NCHAR, NVARCHAR2, and NCLOB types are not supported in the OCI8
extension.

Fetch Functions
There are a number of OCI8 fetch functions, all documented in the PHP Oracle OCI8 Manual. Table 7 lists
the functions.

127

Executing SQL Statements With OCI8

Table 7: OCI8 fetch functions.

OCI8 Function Purpose
oci_fetch_all() Gets all the results at once.

oci_fetch_array() Gets the next row as an array of your choice.

oci_fetch_assoc() Gets the next row as an associative array.

oci_fetch_object() Gets a new row as an object.

oci_fetch_row() Gets the next row as an integer indexed array.

oci_fetch() Used with oci_result(), which returns the result of a given field or
with oci_define_by_name() which presets which variable the data
will be returned into.

Some of the functions have optional parameters. Refer to the PHP manual for more information.
The function commonly used is oci_fetch_array():

$rowarray = oci_fetch_array($statement, $mode);

The mode is optional. Table 8 lists the available modes.

Table 8: oci_fetch_array() options.

Parameter Purpose
OCI_ASSOC Return results as an associative array.

OCI_NUM Return results as a numerically indexed array.

OCI_BOTH Return results as both associative and numeric arrays. This is the default.

OCI_RETURN_NULLS Return PHP NULL value for NULL data.

OCI_RETURN_LOBS Return the actual LOB data instead of an OCI- LOB resource.

Modes can be used together by adding them:

$rowarray = oci_fetch_array($s, OCI_NUM + OCI_RETURN_NULLS);
The oci_fetch_assoc() and oci_fetch_row() functions are special cases of oci_fetch_array().

Fetching as a Numeric Array
A basic example to fetch results in a numerically indexed PHP array is:

$s = oci_parse($c, "select city, postal_code from locations");
oci_execute($s);
while ($res = oci_fetch_array($s, OCI_NUM)) {
 echo $res[0] . " - " . $res[1] . "
\n";
}

128

Fetch Functions

The two columns are index 0 and index 1 in the result array. This displays:

Roma - 00989
Venice - 10934
Tokyo - 1689
Hiroshima - 6823
Southlake – 26192
. . .

Some of the fetch functions do not return NULL data by default. This can be tricky when using numerically
indexed arrays. The result array can appear to have fewer columns than selected, and you can’t always tell
which column was NULL. Either use associative arrays so the column names are directly associated with
their values, or specify the OCI_RETURN_NULLS flag:

$res = oci_fetch_array($s, OCI_NUM+OCI_RETURN_NULLS);

Fetching as an Associative Array
Associative arrays are keyed by the uppercase column name.

$s = oci_parse($c, "select postal_code from locations");
oci_execute($s);
while ($res = oci_fetch_array($s, OCI_ASSOC)) {
 echo $res["POSTAL_CODE"] . "
\n";
}

This displays:

00989
10934
1689
6823
26192
. . .

In an associative array there is no table prefix for the column name. If you join tables where the same
column name occurs with different meanings in both tables, use a column alias in the query. Otherwise
only one of the similarly named columns will be returned by PHP. This contrived example selects the
region_id column twice:

$s = oci_parse($c, "select region_name,
 regions.region_id as myreg,
 country_name,
 countries.region_id
 from countries
 inner join regions
 on countries.region_id = regions.region_id");

oci_execute($s);

while ($res = oci_fetch_array($s, OCI_ASSOC)) {
 echo $res["REGION_NAME"] . " " . $res["MYREG"] . " - " .

129

Executing SQL Statements With OCI8

 $res["COUNTRY_NAME"] . " " . $res["REGION_ID"] . " " .
 "
\n";
}

The query column alias MYREG is used as the index to the result array for one of the region_id columns.
The script output is:

Americas 2 - Argentina 2
Asia 3 - Australia 3
Europe 1 - Belgium 1
Americas 2 - Brazil 2
Americas 2 - Canada 2
. . .

Fetching as an Object
Fetching as objects allows property-style access to be used.

$s = oci_parse($c, 'select * from locations');
oci_execute($s);
while ($row = oci_fetch_object($s)) {
 var_dump($row);
}

This shows each row is an object and gives its properties. The var_dump() function prints and
automatically formats the variable $row. This function is commonly used for debugging PHP scripts. The
output is:

object(stdClass)#1 (6) {
 ["LOCATION_ID"]=>
 string(4) "1000"
 ["STREET_ADDRESS"]=>
 string(20) "1297 Via Cola di Rie"
 ["POSTAL_CODE"]=>
 string(5) "00989"
 ["CITY"]=>
 string(4) "Roma"
 ["STATE_PROVINCE"]=>
 NULL
 ["COUNTRY_ID"]=>
 string(2) "IT"
}
. . .

If the loop is changed to:

while ($row = oci_fetch_object($s)) {
 echo "Address is " . $row->STREET_ADDRESS . "
\n";
}

the output is:

Address is 1297 Via Cola di Rie
Address is 93091 Calle della Testa

130

Fetch Functions

Address is 2017 Shinjuku-ku
Address is 9450 Kamiya-cho
Address is 2014 Jabberwocky Rd
. . .

Defining Output Variables
Explicitly setting output variables can be done with oci_define_by_name(). This example fetches city
names:

$s = oci_parse($c, 'select city from locations');
oci_define_by_name($s, 'CITY', $city); // column name is uppercase
oci_execute($s);
while (oci_fetch($s)) {
 echo "City is " . $city . "
\n";
}

The define is done before execution so Oracle knows where to store the output. The column name in the
oci_define_by_name() call must be in uppercase. The result is:

City is Roma
City is Venice
City is Tokyo
City is Hiroshima
City is Southlake
. . .

The oci_define_by_name() function has an optional type parameter that is useful, for example, to
specify that the PHP variable should be an integer instead of a string.

Fetching and Working with Numbers
Numbers are fetched as strings by OCI8 which can have implications for subsequent PHP arithmetic. Also
PHP and Oracle differ in their precision so a choice must be made where to do calculations.

If your application depends on numeric accuracy with financial data, do arithmetic in Oracle SQL or
PL/SQL, or consider using PHP’s bcmath extension.

This example shows how by default PHP fetches numbers as strings, and the difference between doing
arithmetic in PHP and the database. SQL statements to create the number data are:

create table dt (cn1 number, cn2 number);
insert into dt (cn1, cn2) values (71, 70.6);
commit;

PHP code to fetch the row is:

$s = oci_parse($c, "select cn1, cn2, cn1 - cn2 as diff from dt");
oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC);
var_dump($row);

The var_dump() function shows the PHP datatype for numeric columns is string:

131

Executing SQL Statements With OCI8

array(3) {
 ["CN1"]=>
 string(2) "71"
 ["CN2"]=>
 string(4) "70.6"
 ["DIFF"]=>
 string(2) ".4"
}

The conversion from number to string is done by Oracle and means Oracle formats the data according to
its globalization settings. In some regions the decimal separator for numbers might be a comma, causing
problems if PHP later casts the string to a number for an arithmetic operation. Oracle’s default formats can
be changed easily and it is recommended to explicitly set them so your scripts are portable. See Oracle
Number Formats in the chapter Globalization.

Arithmetic calculations are handled with different precision in PHP. The previous example showed the
result of the subtraction was the expected value. If the code is changed to do the subtraction in PHP:

$row = oci_fetch_array($s, OCI_ASSOC);
$diff = $row['CN1'] - $row['CN2'];
echo "PHP difference is " . $diff . "\n";

The output shows:

PHP difference is 0.40000000000001

PHP has a php.ini parameter precision which determines how many significant digits are displayed in
floating point numbers. By default it is set to 14.

Fetching and Working with Dates
Oracle has capable date handling functionality, supporting various needs. Dates and times with user
specified precisions can be stored. Oracle's date arithmetic makes calendar work easy.

DATE, DATETIME and INTERVAL types are fetched from Oracle as strings, similar to the PHP returns
Oracle's numeric types.

The DATE type has resolution to the second but the default format is often just the day, month and
year. This example shows the output from a date column.

$s = oci_parse($c, "select hire_date from employees where employee_id = 200");
oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC);
echo "Hire date is " . $row['HIRE_DATE']. "\n";

In this example the default format was the Oracle American standard of DD-MON-YY so the output is:

Hire date is 17-SEP-87

Dates inserted are expected to be in the default format too:

$s = oci_parse($c, "insert into mydtb (dcol) values ('04-AUG-07')");
oci_execute($s);

132

Fetch Functions

The default format can be changed with Oracle's globalization settings before or after PHP starts. See the
chapter Globalization.

Regardless of the default, any statement can use its own custom format. When querying, use the
TO_CHAR() function. When inserting, use TO_DATE():

// insert a date
$s = oci_parse($c,
 "insert into mydtb (dcol)
 values (to_date('2006/01/01 05:36:50', 'YYYY/MM/DD HH:MI:SS'))");
oci_execute($s);

// fetch a date
$s = oci_parse($c, "select to_char(dcol, 'DD/MM/YY') as dcol from mydtb");
oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC);

echo "Date is " . $row["DCOL"] . "\n";

The output is:

Date is 01/01/06

To find the current database server time, use the SYSDATE function. Here the date and time returned by
SYSDATE are displayed:

$s = oci_parse($c,
 "select to_char (sysdate, 'YYYY-MM-DD HH24:MI:SS') as now from dual");
$r = oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC);
echo "Time is " . $row["NOW"] . "\n";

The output is:

Time is 2007-08-01 15:28:44

Oracle's TIMESTAMP type stores values precise to fractional seconds. You can optionally store a time zone
or local time zone. For PHP, the local time zone would be the time zone of the web server, which may not
be relevant to user located remotely.

For an example, SYSTIMESTAMP, which is analogous to SYSDATE, gives the current server time stamp
and time zone:

$s = oci_parse($c, "select systimestamp from dual");
$r = oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC);
echo "Time is " . $row["SYSTIMESTAMP"] . "\n";

The output is:

Time is 01-AUG-07 03.28.44.233887 PM -07:00

An INTERVAL type represents the difference between two date values. Intervals are useful for Oracle's
analytic functions. In PHP they are fetched as strings, like DATE and TIMESTAMP are fetched.

133

Executing SQL Statements With OCI8

Insert, Update, Delete, Create and Drop
Executing Data Definition Language (DDL) and Data Manipulation Language (DML) statements, like
CREATE and INSERT, simply requires a parse and execute:

$s = oci_parse($conn, "create table i1test (col1 number)");
oci_execute($s);

The only-run-once installation sections of applications should contain almost all the CREATE TABLE
statements used. Applications in Oracle do not commonly need to create temporary tables at run time, and
it is expensive to do so. Use inline views, or join tables when required. In some cases “global temporary
tables” might be useful but one caveat is that temporary tables have no statistics for the Oracle optimizer to
evaluate.

Transactions
Using transactions to protect the integrity of data is as important in PHP as any other relational database
application. Except in special cases, you want either all your changes to be committed, or none of them.

Unnecessarily committing or rolling back impacts database performance as it causes unnecessary
network traffic (round trips) between PHP and the database.

It is also causes extra processing and more IO to the database files. To maximize efficiency, use transactions
where appropriate.

OCI8’s default commit behavior is like other PHP extensions and different from Oracle’s standard. The
default mode of oci_execute() is OCI_COMMIT_ON_SUCCESS to commit changes. This can easily be
overridden in OCI8. But take care with committing and rolling back. Hidden transactional consistency
problems can be created by not understanding when commits or rollbacks occur. Such problems may not
be apparent in normal conditions, but an abnormal event might cause only part of a transaction to be
committed. Problems can also be caused by programmers trying to squeeze out absolutely optimal
performance by committing or rolling back only when absolutely necessary.

134

Figure 88: Each round trip between PHP and the Database reduces scalability.

Transactions

Scripts that call a connection function more than once with the same credentials should make sure
transactions are complete before re-connecting. Similarly, be careful at the end of scope if the transaction
state is uncommitted.

In the following example a new record is committed when the oci_execute() call is called:

$s = oci_parse($c, "insert into testtable values ('my data')");
oci_execute($s); // automatically committed

Other users of the table will immediately be able to see the new record. Auto-committing can be handy for
single INSERTs and UPDATEs, but transactional and performance requirements should be thought about
before using the default mode everywhere.

You specify not to auto-commit but to begin a transaction with:

$s = oci_parse($c, "insert into testtest values ('my data 2')");
oci_execute($s, OCI_DEFAULT); // not committed

The PHP parameter name OCI_DEFAULT is borrowed from Oracle’s Call Interface, where the value of the C
macro with the same name is actually the default value when nothing else is specified. In PHP a better
name would have been NO_AUTO_COMMIT, but we are stuck with the awkward name.

To commit any un-committed transactions for your connection, do:

oci_commit($c);

To rollback, do:

oci_rollback($c);

Any outstanding transaction is automatically rolled back when a connection is closed or at the end of the
script.

Note: Be careful mixing and matching oci_execute() calls with both commit modes in one script, since you may commit at
incorrect times. In particular, executing a query will commit an outstanding transaction if OCI_DEAFULT is not used in the
query's oci_execute() call.

Any CREATE or DROP statement will automatically commit regardless of the oci_execute() mode. This is a feature of the
Oracle database that cannot be altered.

If all your database calls in a script are queries, or are calls to PL/SQL packages that handle transactions
internally, use:

oci_execute($s);

If you pass OCI_DEFAULT, PHP will send an explicit rollback to the database at the end of every script,
even though it is unnecessary.

135

Executing SQL Statements With OCI8

Autonomous Transactions
Oracle’s procedural language for SQL, PL/SQL, allows you to do autonomous transactions, which are
effectively sub-transactions. An autonomous transaction can be committed or rolled back without affecting
the main transaction. This might be useful for logging data access - an audit record can be inserted even if
the user decides to rollback their main change. An example is:

Script 13: logger.sql

drop table mytable;
drop table logtable;

create table mytable (c1 varchar2(10));
create table logtable (event varchar2(30));

create or replace procedure updatelog(p_event in varchar2) as
 pragma autonomous_transaction;
begin
 insert into logtable (event) values(p_event);
 commit;
end;
/

You could call the PL/SQL function from PHP to log events:

Script 14: logger.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

$s = oci_parse($c, "insert into mytable values ('abc')");
oci_execute($s, OCI_DEFAULT); // don't commit

$s = oci_parse($c, "begin updatelog('INSERT attempted'); end;");
oci_execute($s, OCI_DEFAULT); // don't commit

oci_rollback($c);

?>

Even though OCI_DEFAULT is used, the autonomous transaction commits to the log table. This commit
does not commit the script insert into mytable. After running logger.php, the tables contain:

SQL> select * from mytable;

no rows selected

SQL> select * from logtable;

EVENT

INSERT attempted

136

Transactions

The Transactional Behavior of Connections
To see the transactional behavior of the three connection functions, use SQL*Plus to create a table with a
single date column:

SQL> create table mytable (col1 date);

Rerun transactions.php a few times, changing oci_connect() to oci_new_connect() and
oci_pconnect():

Script 15: transactions.php

<?php

function do_query($c, $query)
{
 $s = oci_parse($c, $query);
 oci_execute($s, OCI_DEFAULT);
 oci_fetch_all($s, $res);
 echo "<pre>";
 var_dump($res); // PHP debugging function for displaying output
 echo "</pre>";
}

$c1 = oci_connect("hr", "hrpwd", "localhost/XE"); // first connection
$s = oci_parse($c1, "insert into mytable values ('" . date('j:M:y') . "')");
oci_execute($s, OCI_DEFAULT); // does not commit
do_query($c1, "select * from mytable");

$c2 = oci_connect("hr", "hrpwd", "localhost/XE"); // second connection
do_query($c2, "select * from mytable");

?>

The script inserts (but does not commit) using one connection and queries back the results with the original
and a second connection.

Using an oci_connect() connection lets you query the newly inserted (but uncommitted) data both
times because $c1 and $c2 refer to the same Oracle connection. Using oci_pconnect() is the same as
oci_connect(). The output is:

array(1) {
 ["COL1"]=>
 array(1) {
 [0]=>
 string(9) "16-JUN-07"
 }
}
array(1) {
 ["COL1"]=>
 array(1) {
 [0]=>
 string(9) "16-JUN-07"
 }

137

Executing SQL Statements With OCI8

}

Using oci_new_connect() for $c2 gives a new connection which cannot see the uncommitted data. The
output shows the second query does not fetch any rows:

array(1) {
 ["COL1"]=>
 array(1) {
 [0]=>
 string(9) "16-JUN-07"
 }
}
array(1) {
 ["COL1"]=>
 array(0) {
 }
}

PHP Error Handling
The PHP installation chapter recommended setting display_errors to On in php.ini to aid debugging.
You might consider also enabling the E_STRICT level for the error_reporting parameter so you can
catch any potential problems that will cause upgrade issues. In a production system you should make sure
error output is logged instead of displayed. You do not want to leak internal information to web users, and
you do not want application pages containing ugly error messages.

Error handling can also be controlled at runtime. For example, to see all errors displayed, scripts can
set:

error_reporting(E_ALL);
ini_set('display_errors', true);

Depending on the php.ini value of display_errors, you might consider using PHP’s @ prefix to
completely suppress automatic display of function errors, although this impacts performance:

$c = @oci_connect('hr', 'hrpwd', 'localhost/XE');

To trap output and recover from errors, PHP’s output buffering functions may be useful. If an error occurs
part way during creation of the HTML page being output, the partially complete page contents can be
discarded and an error page created instead.

Handling OCI8 Errors
The error handing of any solid application requires careful design. Expect the unexpected. Check all return
codes. Oracle may piggy-back calls to the database to optimize performance. This means that errors may
occur during later OCI8 calls than you might expect.

To display OCI8 errors, use the oci_error() function. The function requires a different argument
depending on the calling context, as shown later. It returns an array.

138

PHP Error Handling

Table 9: Error array after $e = oci_error().

Variable Description
$e["code"] Oracle error number

$e["message"] Oracle error message

$e["offset"] Column position in the SQL statement of the error

$e["sqltext"] The text of the SQL statement

For information on getting extra information for errors during creation of PL/SQL procedures, see the
chapter Using PL/SQL with OCI8.

OCI8 Connection Errors
For connection errors, no argument to oci_error() is needed:

$c = oci_connect("hr", "not_hrpwd", "localhost/XE");
if (!$c) {
 $e = oci_error(); // No parameter passed
 var_dump($e);
}

With the invalid password, the output is:

array(4) {
 ["code"]=>
 int(1017)
 ["message"]=>
 string(50) "ORA-01017: invalid username/password; logon denied"
 ["offset"]=>
 int(0)
 ["sqltext"]=>
 string(0) ""
}

The output shows that $e is an array. The code entry 1017 matches the error number in the error message.
Since there was no SQL statement involved, the sqltext is empty and the offset is 0.

The internal reimplementation of OCI8 1.3 connection management makes it better at automatically
recovering from database unavailability errors. Even so, with persistent connections PHP can return a
cached connection without knowing if the database is still available. If the database has restarted since the
time of first connection, or the DBA had enabled resource management that limited the maximum
connection time for a user, or even if the DBA issued an ALTER SESSION KILL command to close the
user's database session, an OCI8 call might return an Oracle error when it tries to reuse a persistent
connection. However OCI8 will then mark the connection as invalid and the next time the Apache/PHP
process tries to connect, a new connection will be successfully created and usable.

For example, consider a script that uses a persistent connection:

<?php

139

Executing SQL Statements With OCI8

$c = oci_pconnect('hr', 'hrpwd', 'localhost/XE');
if (!$c) {
 $e = oci_error();
 echo $e['message'] . "
\n";
 exit;
}
...

?>

After the script completes, if the DBA issues an ALTER SESSION KILL command for the database
connection created, the next time the script is run it will display the error:

ORA-00028: your session has been killed

However if the script is run a third time it will connect and run to completion normally.

OCI8 Parse Errors
For parse errors, pass oci_error() the connection resource:

$s = oci_parse($c, "select city from locations");
if (!$s) {
 $e = oci_error($c); // Connection resource passed
 echo $e["message"] . "
\n";
}

OCI8 Execution and Fetching Errors
For execution and fetching errors, pass oci_error() the statement resource:

$rc = oci_execute($s);
if (!$rc) {
 $e = oci_error($s); // Statement resource passed
 var_dump($e);
}

$rc = oci_fetch_all($s, $results);
if (!$rc) {
 $e = oci_error($s); // Statement resource passed
 var_dump($e);
}

An example of an execution error is when the table being queried does not exist:

$s = oci_parse($c, "select city from not_locations");
$rc = oci_execute($s);
if (!$rc) {
 $e = oci_error($s);
 var_dump($e);
}

140

PHP Error Handling

The output shows the message number and text. It also contains the text of the statement and the column
offset position of the error in that statement. Column 17 is the table name not_locations.

array(4) {
 ["code"]=>
 int(942)
 ["message"]=>
 string(39) "ORA-00942: table or view does not exist"
 ["offset"]=>
 int(17)
 ["sqltext"]=>
 string(30) "select city from not_locations"
}

Tuning SQL Statements in PHP Applications
Tuning is an art and a science. The database-centric approach to tuning is to first tune the application, next
tune the SQL, and finally tune the database.

SQL tuning and Database tuning are covered in the Oracle documentation. SQL tuning will help make
efficient use of table design, indexes and the Oracle optimizer. Database tuning maximizes throughput and
allows efficient use of buffering and I/O strategies.

On the OCI8 side, transaction management can help reduce round trips from PHP to the database and
reduce processing overheads. Make sure to commit only when necessary.

It is almost always more efficient to select the minimum amount of data necessary and only return
rows and columns that will be used by PHP. Consider using PL/SQL packages for complex data operations
to minimize data transfers. Efficient caching of statements by having reusable code and using bind
variables are fundamental in improving database performance.

Using Bind Variables
Bind variables are just like %s print format specifiers. They let you re-execute a statement with different
values for the variables and get different results. In the PHP community statements like this are known as
prepared statements.

If you do not bind, Oracle must reparse and cache multiple statements.

141

Executing SQL Statements With OCI8

Binding is highly recommended. It can improve overall database throughput. Oracle is more likely to find
the matching statement in its cache and be able to reuse the execution plan and context for that statement,
even if someone else originally executed it.

Bind variables are also an important way to prevent SQL injection security attacks. SQL injection may occur
when SQL statements are hard coded text concatenated with user input:

$w = "userid = 1";
$s = oci_parse($c, "select * from mytable where $w");

If the user input is not carefully checked, then it may be possible for a malicious user to execute a SQL
statement of their choice instead of the one you intended.

In Oracle, a bind variable is a colon-prefixed name in the SQL text. A oci_bind_by_name() call tells
Oracle which PHP variable to actually use when executing the statement.

142

Figure 90: Binding improves performance and security.

Figure 89: Not binding wastes database resources.

Tuning SQL Statements in PHP Applications

Script 16: bindvar.php

<?php

$c = oci_connect("hr", "hrpwd", "localhost/XE");

$s = oci_parse($c, "select last_name from employees where employee_id = :eidbv");
$myeid = 101;
oci_bind_by_name($s, ":eidbv", $myeid);
oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC);
echo "Last name is: ". $row['LAST_NAME'] ."
\n";

?>

The output is the last name of employee 101:

Last name is: Kochhar

There is no need to (and for efficiency you should not) re-parse the SQL statement if you just want to
change the value of the bind variable. The following code would work when appended to the end of
bindvar.php:

// No need to re-parse or re-bind
$myeid = 102;
oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC);
echo "Last name is: ". $row['LAST_NAME'] ."
\n";

Re-running bindvar.php now gives:

Last name is: Kochhar
Last name is: De Haan

You can bind a single value with each oci_bind_by_name() call. Multiple values can be bound with
another function, oci_bind_array_by_name(), and passed to PL/SQL blocks. This is discussed in the
chapter on PL/SQL.

The syntax of oci_bind_by_name() is:

$rc = oci_bind_by_name($statement, $bindvarname, $phpvariable, $length, $type)

The length and type are optional. The default type is the string type, SQLT_CHR. Oracle will convert most
basic types to or from this as needed. For example when binding a number, you can omit the type
parameter.

It is recommended to pass the length if a query is being re-executed in a script with different bind
values. For example when binding, pass the length of the largest potential string. Passing the length also
avoids potential edge-case behavior differences if a script runs with multiple different Oracle character
sets.

Some older PHP examples use & with oci_bind_by_name() parameters. Do not do this. Since a call-
by-reference clean up in the implementation of PHP, this syntax has been deprecated and may cause
problems.

143

Executing SQL Statements With OCI8

A bind call tells Oracle which memory address to read data from. That address needs to contain valid
data when oci_execute() is called. If the bind call is made in a different scope from the execute call there
could be a problem. For example, if the bind is in a function and a function-local PHP variable is bound,
then Oracle may read an invalid memory location if the execute occurs after the function has returned. This
has an unpredictable outcome.

It is a common problem with binding in a foreach loop:

$ba = array(':dname' => 'IT Support', ':loc' => 1700);
foreach ($ba as $key => $val) {
 oci_bind_by_name($s, $key, $val);
}

The problem here is that $val is local to the loop (and is reused). The SQL statement will not execute as
expected. Changing the bind call in the loop to use $ba[$key] solves the problem:

Script 17: bindloop.php

<?php

$c = oci_connect("hr", "hrpwd", "localhost/XE");

$s = oci_parse($c, 'select *
 from departments
 where department_name = :dname and location_id = :loc');

$ba = array(':dname' => 'IT Support', ':loc' => 1700);
foreach ($ba as $key => $val) {
 oci_bind_by_name($s, $key, $ba[$key]);
}

oci_execute($s);

while (($row = oci_fetch_array($s, OCI_ASSOC))) {
 foreach ($row as $item) {
 echo $item." ";
 }
 echo "
\n";
}

?>

There is one case where you might decide not to use bind variables. When queries contain bind variables,
the optimizer does not have any information about the value you may eventually use when the statement
is executed. If your data is highly skewed, you might want to hard code values. But if the data is derived
from user input be sure to sanitize it.

Finally, Oracle does not use question mark '?' for bind variable placeholders at all and OCI8 supports
only named placeholders with a colon prefix. Some PHP database abstraction layers will simulate support
for question marks by scanning your statements and replacing them with supported syntax.

144

Tuning SQL Statements in PHP Applications

Binding with LIKE and REGEXP_LIKE Clauses
Similar to the simple example above, you can bind the value used in a pattern-matching SQL LIKE or
REGEXP_LIKE clause:

Script 18: bindlike.php

<?php

$c = oci_connect("hr", "hrpwd", "localhost/XE");

$s = oci_parse($c,
 "select city, state_province from locations where city like :bv");
$city = 'South%';
oci_bind_by_name($s, ":bv", $city);
oci_execute($s);
oci_fetch_all($s, $res);

var_dump($res);

?>

This uses Oracle's traditional LIKE syntax, where '%' means match anything. An underscore in the pattern
string '_' would match exactly one character.

The output from bindlike.php is cities and states where the city starts with 'South':

array(2) {
 ["CITY"]=>
 array(3) {
 [0]=>
 string(15) "South Brunswick"
 [1]=>
 string(19) "South San Francisco"
 [2]=>
 string(9) "Southlake"
 }
 ["STATE_PROVINCE"]=>
 array(3) {
 [0]=>
 string(10) "New Jersey"
 [1]=>
 string(10) "California"
 [2]=>
 string(5) "Texas"
 }
}

Oracle also supports regular expression matching with functions like REGEXP_LIKE, REGEXP_INSTR,
REGEXP_SUBSTR, and REGEXP_REPLACE.

In a query from PHP you might bind to REGEXP_LIKE using:

145

Executing SQL Statements With OCI8

Script 19: bindregexp.php

<?php

$c = oci_connect("hr", "hrpwd", "localhost/XE");

$s = oci_parse($c, "select city from locations where regexp_like(city, :bv)");
$city = '.*ing.*';
oci_bind_by_name($s, ":bv", $city);
oci_execute($s);
oci_fetch_all($s, $res);

var_dump($res);

?>

This displays all the cities that contain the letters 'ing':

array(1) {
 ["CITY"]=>
 array(2) {
 [0]=>
 string(7) "Beijing"
 [1]=>
 string(9) "Singapore"
 }
}

Binding Multiple Values in an IN Clause
User data for a bind variable is always treated as pure data and never as part of the SQL statement. Because
of this, trying to use a comma separated list of items in a single bind variable will be recognized by Oracle
only as a single value, not as multiple values. The common use case is when allowing a web user to choose
multiple options from a list and wanting to do a query on all values.

Hard coding multiple values in an IN clause in the SQL statement works:

$s = oci_parse($c,
 "select last_name from employees where employee_id in (101,102)");
oci_execute($s);
oci_fetch_all($s, $res);
foreach ($res['LAST_NAME'] as $name) {
 echo "Last name is: ". $name ."
\n";
}

This displays both surnames but it leads to the scaling and security issues that bind variables overcome.
Trying to emulate the query with a bind variable does not work:

$s = oci_parse($c,
 "select last_name from employees where employee_id in (:eidbv)");
$myeids = "101,102";
oci_bind_by_name($s, ":EIDBV", $myeids);
oci_execute($s);

146

Tuning SQL Statements in PHP Applications

oci_fetch_all($s, $res);

All this gives is the error ORA-01722: invalid number because the $myeids string is treated as a single
value and is not recognized as a list of numbers.

The solution for a fixed, small number of values in the IN clause is to use individual bind variables.
NULLs can be bound for any unknown values:

Script 20: bindinlist.php

<?php

$c = oci_connect("hr", "hrpwd", "localhost/XE");

$s = oci_parse($c,
 "select last_name from employees where employee_id in (:e1, :e2, :e3)");
$mye1 = 103;
$mye2 = 104;
$mye3 = NULL; // pretend we were not given this value
oci_bind_by_name($s, ":E1", $mye1);
oci_bind_by_name($s, ":E2", $mye2);
oci_bind_by_name($s, ":E3", $mye3);
oci_execute($s);
oci_fetch_all($s, $res);

foreach ($res['LAST_NAME'] as $name) {
 echo "Last name is: ". $name ."
\n";
}

?>

The output is:

Last name is: Ernst
Last name is: Hunold

Tom Kyte discusses the general problem and gives solutions for other cases in the March – April 2007
Oracle Magazine.

Using Bind Variables to Fetch Data
As well as what are called IN binds, which pass data into Oracle, there are also OUT binds that return
values. These are mostly used to return values from PL/SQL procedures and functions. (See the chapter on
using PL/SQL). If the PHP variable associated with an OUT bind does not exist, you need to specify the
optional length parameter. Another case when the length should be specified is when returning numbers.
By default in OCI8, numbers are converted to and from strings when they are bound. This means the
length parameter should also be passed to oci_bind_by_name() when returning a number otherwise
digits may be truncated:

oci_bind_by_name($s, ":MB", $mb, 10);

147

Executing SQL Statements With OCI8

There is also an optional fifth parameter, which is the datatype. This mostly used for binding LOBS and
result sets as shown in a later chapter. One micro-optimization when numbers are known to be integral, is
to specify the datatype as SQLT_INT. This avoids the type conversion cost:

oci_bind_by_name($s, ":MB", $mb, -1, SQLT_INT);

In this example, the length was set to –1 meaning use the native data size of an integer.

Binding in an ORDER BY Clause
Some applications allow the user to choose the presentation order of results. Typically the number of
variations for an ORDER BY clause are small and so having different statements executed for each condition
is efficient:

switch ($v) {
 case 1:
 $ob = ' order by first_name';
 break;
 default:
 $ob = ' order by last_name';
 break;
}

$s = oci_parse($c, 'select first_name, last_name from employees' . $ob);

But if your tuning indicates that binding in a ORDER BY clause is necessary, and the columns are of the
same type, try using a SQL CASE statement:

$s = oci_parse($c, "select first_name, last_name
 from employees
 order by
 case :ob
 when 'FIRST_NAME' then first_name
 else last_name
 end");
oci_bind_by_name($s, ":ob", $vs);
oci_execute($s);

Using ROWID Bind Variables
The pseudo-column ROWID uniquely identifies a row within a table. This example shows fetching a record,
changing the data, and binding its rowid in the WHERE clause of an UPDATE statement.

Script 21: rowid.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

// Fetch a record
$s = oci_parse($c,

148

Tuning SQL Statements in PHP Applications

 'select rowid, street_address
 from locations where location_id = :l_bv for update');
$locid = 3000; // location to fetch
oci_bind_by_name($s, ':l_bv', $locid);
oci_execute($s, OCI_DEFAULT);
$row = oci_fetch_array($s, OCI_ASSOC+OCI_RETURN_NULLS);

$rid = $row['ROWID'];
$addr = $row['STREET_ADDRESS'];

// Change the address to upper case
$addr = strtoupper($addr);

// Save new value
$s = oci_parse($c,
 'update locations set street_address = :a_bv where rowid = :r_bv');
oci_bind_by_name($s, ':r_bv', $rid, -1, OCI_B_ROWID);
oci_bind_by_name($s, ':a_bv', $addr);
oci_execute($s);

?>

After running rowid.php, the address has been changed from

Murtenstrasse 921

to

MURTENSTRASSE 921

Tuning the Prefetch Size
You can tune PHP’s overall query performance with the configuration parameter:

oci8.default_prefetch = 100

This parameter sets the number of rows returned in a batch when each fetch call to the database occurs.
The default value is 100. Prior to OCI8 1.3, the default was 10 and the OCI8 extension also capped the
memory used by the prefetch buffer at 1024 * oci8.default_prefetch bytes.

Increasing the prefetch value can significantly improve performance of queries that return a large
number of rows. It minimizes database server round-trips by returning as much data as possible each time a
request to the database is made. Testing will show the optimal size for your queries. There is no benefit
using too large a prefetch value. Conversely, because Oracle dynamically allocates space, there is little to be
gained by reducing the value too small.

The cache is managed by Oracle. The database returns the specified number of rows to a cache in its
client buffers. PHP functions like oci_fetch_array() return one row to the user per call regardless of the
prefetch size. Subsequent OCI8 fetches will consume the data in the cache until eventually another batch of
records is fetched from the database.

149

Executing SQL Statements With OCI8

You can also change the prefetch value at runtime with the oci_set_prefetch() function:

$s = oci_parse($c, "select city from locations");
oci_execute($s);
oci_set_prefetch($s, 200);
$row = oci_fetch_array($s, OCI_ASSOC);

For oci_fetch_all(), which returns all query rows to the user, PHP OCI8 internally fetches all the
records in batches of the specified prefetch size.

Prefetching is not used when queries contain LONG or LOB columns, or when fetching from a REF
CURSOR.

Tuning the Statement Cache Size
Performance is improved with Oracle's “client” (that is, PHP OCI8) statement caching feature. In the PHP
extension the default statement cache size is 20 statements. You can change the size with the php.ini
directive:

oci8.statement_cache_size = 20

The recommendation is to use the number of statements in the application’s working set of SQL as the
value. Caching can be disabled by setting the size to 0.

The client-side statement cache is in addition to the standard database statement cache. The client cache
means even the text of the statement does not need to be transmitted to the database more than once,
reducing network traffic and database server load. The database can directly look up the statement context
in its cache without even having to hash the statement. In turn, the database does not need to transfer
meta-information about the statement back to PHP.

150

Figure 91: The first request to the database fetches multiple rows to the cache. Subsequent fetches read from the cache.

Tuning SQL Statements in PHP Applications

The cache is per-Oracle session so this feature is more useful when persistent connections are used. Like
many tuning options, there is a time/memory trade-off when tweaking this parameter. The statement cache
also means slightly more load is put on the PHP host.

To tune the statement cache size, monitor general web server load and the database statistic "bytes sent
via SQL*Net to client". This can be seen, for example, in Automatic Workload Repository (AWR) reports.
When caching is effective, the statistic should show an improvement. Adjust the value of
oci8.statement_cache_size to your satisfaction.

OCI8 clears the cache if a statement returns a database error.

Using the Server and Client Query Result Caches
Oracle Database 11g introduces “server-side”and “client-side” result caches. These store the final result of
queries.

The database cache is enabled with the RESULT_CACHE_MODE database parameter, which has
several modes. With the default mode, queries for which you want results to be cached need a hint added:

$s = oci_parse($c, "select /*+ result_cache */ * from employee”);

No PHP changes are required – applications will immediately benefit from the server cache.
The client cache is ideal for small queries from infrequently modified tables, such as lookup tables. It

can reduce PHP statement processing time and significantly reduce database CPU usage, allowing the
database to handle more PHP processes and users. The client-side cache is per PHP process.

A key feature of the caches is that Oracle automatically handles cache entry invalidation when a
database change invalidates the stored results. Oracle will check the client cache entries each time any
round trip to the database occurs. If no round trip has happened with a configurable “lag” time, the client
cache is assumed stale.

The Oracle® Call Interface Programmer's Guide, 11g Release 1 (11.1) contains the best description of the
feature and has more about when to use it and how to manage it.

151

Figure 92: The second time a statement is issued, the statement text is not sent to the database.

Executing SQL Statements With OCI8

To demonstrate client caching, the database parameter CLIENT_RESULT_CACHE_SIZE can be set to a
non zero value and the Oracle database restarted:

$ sqlplus / as sysdba
SQL> alter system set client_result_cache_size=64M scope=spfile;
SQL> startup force

In PHP, the key to using the client-cache is to pass OCI_DEFAULT to oci_execute():

Script 22: crc.php

<?php

$c = oci_pconnect('hr', 'hrpwd', 'localhost/orcl');

for ($i = 0; $i < 1000; ++$i) {
 $s = oci_parse($c,
 "select /*+ result_cache */ * from employees where rownum < 2");
 oci_execute($s, OCI_DEFAULT);
 oci_fetch_all($s, $res);
}

?>

Before executing crc.php, run this query in the SQL*Plus session:

SQL> select parse_calls, executions, sql_text
 2 from v$sql
 3 where sql_text like '%employees%';

PARSE_CALLS EXECUTIONS SQL_TEXT
----------- ---------- ---
 1 1 select parse_calls, executions, sql_text from v$sql
 where sql_text like '%employees%'

This shows the database being accessed when the query is executed. Initially it shows just the monitoring
query itself.

In another terminal window, run crc.php from the command line or run it in a browser – it doesn't
display any results.

$ php crc.php

Re-running the monitoring query shows that during the 1000 loop iterations, the database executed the
PHP query just twice, once for the initial execution and the second time by a subsequent cache validation
check:

PARSE_CALLS EXECUTIONS SQL_TEXT
----------- ---------- ---
 2 2 select /*+ result_cache */ * from employees where
 rownum < 2
 2 2 select parse_calls, executions, sql_text from v$sql
 where sql_text like '%employees%'

152

Tuning SQL Statements in PHP Applications

This means that 998 of the times the statement was performed, the client cache was used for the results,
with no database access required.

Now edit crc.php and remove OCI_DEFAULT from the execute call:

 oci_execute($s);

Re-run the script:

$ php crc.php

The monitoring query now shows the modified query was executed another 1000 times, or once per loop
iteration. This means the client query result cache was not used and each iteration had to be processed in
the database:

PARSE_CALLS EXECUTIONS SQL_TEXT
----------- ---------- ---
 4 1002 select /*+ result_cache */ * from employees where
 rownum < 2
 3 3 select parse_calls, executions, sql_text from v$sql
 where sql_text like '%employees%'

A dedicated view CLIENT_RESULT_CACHE_STATS$ is periodically updated with statistics on client
caching. For short tests like this example where the process quickly runs and terminates, it may not give
meaningful results and V$SQL can be more useful.

Limiting Rows and Creating Paged Datasets
Oracle’s SQL does not have a LIMIT keyword. It is not in the SQL standard and the vendors that use it have
different implementations. There are several alternative ways to limit the number of rows returned in
OCI8.

The oci_fetch_all() function has optional arguments to specify a range of results to fetch. This is
implemented by the extension, not by Oracle’s native functionality. All rows preceding those you want still
have to be fetched from the database.

$firstrow = 3;
$numrows = 5;
oci_execute($s);
oci_fetch_all($s, $res, $firstrow, $numrows);
var_dump($res);

It is more efficient to let Oracle do the row selection and only return the exact number of rows required.
The canonical paging query for Oracle8i onwards is given on http://asktom.oracle.com:

select *
from (select a.*, rownum as rnum
 from (YOUR_QUERY_GOES_HERE -- including the order by) a
 where rownum <= MAX_ROWS)
where rnum >= MIN_ROWS

Here, MIN_ROWS is the row number of first row and MAX_ROWS is the row number of the last row to return.
In PHP you might do this:

153

Executing SQL Statements With OCI8

Script 23: limit.php

<?php

$c = oci_connect("hr", "hrpwd", "localhost/XE");

$mystmt = "select city from locations order by city";
$minrow = 4; // row number of first row to return
$maxrow = 8; // row number of last row to return

$pagesql = "select *
 from (select a.*, rownum as rnum
 from ($mystmt) a
 where rownum <= :maxrow)
 where rnum >= :minrow";

$s = oci_parse($c, $pagesql);
oci_bind_by_name($s, ":maxrow", $maxrow);
oci_bind_by_name($s, ":minrow", $minrow);
oci_execute($s);
oci_fetch_all($s, $res);

var_dump($res);

?>

Note that $mystmt is not bound. Bind data is not treated as code, so you cannot bind the text of the
statement and expect it to be executed. Beware of SQL injection security issues if SQL statements are
constructed or concatenated.

The output of the script is:

array(2) {
 ["CITY"]=>
 array(5) {
 [0]=>
 string(6) "Geneva"
 [1]=>
 string(9) "Hiroshima"
 [2]=>
 string(6) "London"
 [3]=>
 string(11) "Mexico City"
 [4]=>
 string(6) "Munich"
 }
 ["RNUM"]=>
 array(5) {
 [0]=>
 string(1) "4"
 [1]=>
 string(1) "5"
 [2]=>
 string(1) "6"

154

Limiting Rows and Creating Paged Datasets

 [3]=>
 string(1) "7"
 [4]=>
 string(1) "8"
 }
}

An alternative and preferred query syntax uses Oracle’s analytic ROW_NUMBER() function. The query:

select last_name, row_number() over (order by last_name) as myr
from employees

returns two columns identifying the last name with its row number:

LAST_NAME MYR
------------------------- ----------
Abel 1
Ande 2
Atkinson 3
. . .

By turning this into a subquery and using a WHERE condition any range of names can be queried. For
example to get the 11th to 20th names the query is:

select last_name FROM
 (select last_name,
 row_number() over (order by last_name) as myr
 from employees)
 where myr between 11 and 20

In SQL*Plus the output is:

LAST_NAME

Bissot
Bloom
Bull
Cabrio
Cambrault
Cambrault
Chen
Chung
Colmenares
Davies

Auto-Increment Columns
Auto-increment columns in Oracle can be created using a sequence generator and a trigger.

Sequence generators are defined in the database and return Oracle numbers. Sequence numbers are
generated independently of tables. Therefore, the same sequence generator can be used for more than one
table or anywhere that you want to use a unique number. Sequence generation is useful to generate unique
primary keys for your data and to coordinate keys across multiple tables. You can get a new value from a

155

Executing SQL Statements With OCI8

sequence generator using the NEXTVAL operator in a SQL statement. This gives the next available number
and increments the generator. The similar CURRVAL operator returns the current value of a sequence
without incrementing the generator.

A trigger is a PL/SQL procedure that is automatically invoked at a predetermined point. In this
example a trigger is invoked whenever an insert is made to a table.

In SQL*Plus an auto increment column myid can be created like:

Script 24: autoinc.sql

create sequence myseq;

create table mytable (myid number primary key, mydata varchar2(20));

create trigger mytrigger
before insert on mytable for each row
begin
 select myseq.nextval into :new.myid from dual;
end;
/

In Oracle Database11g you can replace the SELECT with:

 :new.myid := myseq.nextval;

In PHP insert two rows:

Script 25: autoinc.php

<?php

$c = oci_connect("hr", "hrpwd", "localhost/XE");

$s = oci_parse($c, "insert into mytable (mydata) values ('Hello')");
oci_execute($s);
$s = oci_parse($c, "insert into mytable (mydata) values ('Bye')");
oci_execute($s);

?>

Querying the table in SQL*Plus shows the MYID values were automatically inserted and incremented:

SQL> select * from mytable;

 MYID MYDATA
---------- --------------------
 1 Hello
 2 Bye

The identifier numbers will be unique and increasing but may not be consecutive. For example if someone
rolls back an insert, a sequence number can be “lost”.

156

Getting the Last Insert ID

Getting the Last Insert ID
OCI8 does not have an explicit “insert_id” function. Instead, use a RETURN INTO clause and a bind
variable. Using the table and trigger created above in autoinc.sql, the insert would be:

Script 26: insertid.php

<?php

$c = oci_connect("hr", "hrpwd", "localhost/XE");

$s = oci_parse($c,
 "insert into mytable (mydata) values ('Hello') return myid into :id");
oci_bind_by_name($s, ":id", $id, 20, SQLT_INT);
oci_execute($s);
echo "Data inserted with id: $id\n";

?>

This returns the value of the myid column for the new row into the PHP variable $id. The output,
assuming the two inserts of autoinc.php were previously executed, is:

Data inserted with id: 3

You could similarly return the ROWID of the new row into a descriptor:

$rid = oci_new_descriptor($c, OCI_D_ROWID);
$s = oci_parse($c,
 "insert into mytable (mydata) values ('Hello') return rowid into :rid");
oci_bind_by_name($s, ":rid", $rid, -1, OCI_B_ROWID);
oci_execute($s);

Exploring Oracle
Explore the SQL and PL/SQL languages. Make maximum reuse of functionality that already exists. Tom
Kyte’s popular site, http://asktom.oracle.com, has a lot of useful information.

Oracle’s general guideline is to let the database manage data and to transfer the minimum amount
across the network. Avoid shipping data from the database to PHP for unnecessary post processing. Data is
a core asset of your business. It should be treated consistently across your applications. Keeping a thin
interface between your application layer and the database is also good programming practice.

There are many more useful SQL and Database features than those described in this book. They are left
for you to explore. A couple are mentioned below.

Case Insensitive Queries
If you want to do queries that sort and match data in a case insensitive manner, change the session
attributes NLS_SORT and NLS_COMP first, either with environment variables, or per session:

alter session set nls_sort = binary_ci;
alter session set nls_comp = linguistic;

157

Executing SQL Statements With OCI8

Analytic Functions in SQL
Oracle’s Analytic functions are a useful tool to compute aggregate values based on a group of rows. Here is
an example of a correlation. CORR() returns the coefficient of correlation of a set of number pairs. You must
be connected as the system user in this particular example, since it depends on table data not available to hr:

select max_extents, corr(max_trans, initial_extent)
from all_tables
group by max_extents;

Other analytic functions allow you to get basic information like standard deviations or do tasks such as
ranking (for Top-N or Bottom-N queries) or do linear regressions.

158

CHAPTER 11

USING PL/SQL WITH OCI8
PL/SQL is Oracle’s procedural language extension to SQL. It is a server-side, stored language that is easy-
to-use. PL/SQL enables you to mix SQL statements with procedural constructs. PHP can call PL/SQL blocks
to make use of advanced database functionality, and can use it to efficiently insert and fetch data. As with
SQL, the PL/SQL language gives applications easy access to Oracle’s better date and number handling, for
example to make sure your financial data is not affected by PHP’s floating point semantics. You can create
stored procedures, functions and packages so your business logic is reusable in all your applications.
PL/SQL has an inbuilt native compiler (in Oracle Database 11g), optimizing and debugging features, and a
‘wrap’ code obfuscation facility to protect the intellectual property of your applications.

PL/SQL Overview
There are a number of pre-supplied PL/SQL packages to make application development easier. Packages
exist for full text indexing, queuing, change notification, sending emails, job scheduling and TCP access,
just to name a few. When deciding whether to write PHP on the client or PL/SQL in the server, consider
your skill level in the languages, the cost of data transfer across the network and the re-usability of the
code. If you write in PL/SQL, all your Oracle applications in any tool or client language can reuse the
functionality. Some functionality should only ever be in the database, such as data change triggers. In
Oracle, you can create these to be fired when an event such as an insert or a user logon occurs.

A PL/SQL block has three basic parts:

● A declarative part (DECLARE)

● An executable part (BEGIN ... END)

● An exception-handling (EXCEPTION) part that handles error conditions

For example:

declare
 sal_l pls_integer;
begin
 select salary into sal_l from employees where employee_id = 191;
 dbms_output.put_line('Salary is ' || sal_l);
 exception
 when no_data_found then
 dbms_output.put_line('No results returned');
end;

You can run this in many tools, including PHP. In Oracle’s SQL*Plus it is run by entering the text at the
prompt and finishing with a single / to tell SQL*Plus to execute the code. If you turn on SET
SERVEROUTPUT beforehand, then SQL*Plus will display the output messages after execution:

SQL> set serveroutput on
SQL> declare

159

Using PL/SQL With OCI8

 2 sal_l pls_integer;
 3 begin
 4 select salary into sal_l
 5 from employees
 6 where employee_id = 191;
 7 dbms_output.put_line('Salary is ' || sal_l);
 8 exception
 9 when no_data_found then
 10 dbms_output.put_line('No results returned');
 11 end;
 12 /
Salary is 2500

Other tools have different ways of indicating the end of the statements and how to switch server output on.
Only the executable part of a PL/SQL block is required. The declarative and exception hander parts are

optional.
If an application performs several SQL statements at one time, it can be efficient to bundle them

together in a single PL/SQL procedure. Instead of executing multiple SQL statements, PHP only needs to
execute one PL/SQL call. This reduces the number of round trips between PHP and the database, and can
improve overall performance.

Blocks, Procedures, Packages and Triggers
PL/SQL code can be categorized as one of the following:

● Anonymous block

● Stored procedure or function

● Package

● Trigger

Anonymous Blocks
An anonymous block is a PL/SQL block included in your application that is not named or stored in the
database. The previous example is an anonymous block. Because these blocks are not stored in the
database, they are generally for one-time use in a SQL script, or for simple code dynamically submitted to
the Oracle server.

Stored or Standalone Procedures and Functions
A stored procedure or function is a PL/SQL block that Oracle stores in the database and can be called by
name from an application. Functions return a value when executed.

Procedures and functions can be used from other procedures or functions. They can be enabled and
disabled to prevent them being used. They may also have an invalid state, if anything they reference is not
available.

When you create a stored procedure or function, Oracle stores its parsed representation in the database
for efficient reuse. Procedures can be created in SQL*Plus like:

160

Blocks, Procedures, Packages and Triggers

SQL> create table mytab (mydata varchar2(40), myid number);

SQL> create or replace procedure
 2 myproc(d_p in varchar2, i_p in number) as
 3 begin
 4 insert into mytab (mydata, myid) values (d_p, i_p);
 5 end;
 6 /

The procedure is only created, not run. Programs like PHP can run it later.
PL/SQL functions are created in a similar way using the CREATE OR REPLACE FUNCTION command.
If you have creation errors, use the SQL*Plus SHOW ERRORS command to display any messages. For

example, creating a procedure that references an invalid table causes an error:

SQL> create or replace procedure
 2 myproc(d_p in varchar2, i_p in number) as
 3 begin
 4 insert into yourtab (mydata, myid) values (d_p, i_p);
 5 end;
 6 /

Warning: Procedure created with compilation errors.

SQL> show errors
Errors for PROCEDURE MYPROC:

LINE/COL ERROR
-------- ---
4/3 PL/SQL: SQL Statement ignored
4/15 PL/SQL: ORA-00942: table or view does not exist

If you are running a SQL script file in SQL*Plus, it is helpful to turn SET ECHO ON to see the line numbers.
See below for handling PL/SQL errors in PHP.

Packages
Typically, stored procedures and functions are encapsulated into packages. This helps minimizes
recompilation of dependent objects. The package specification defines the signatures of the functions and
procedures. If that definition is unchanged, code that invokes it will not need to be recompiled even if the
implementation in the package body changes.

SQL> create or replace package mypack as
 2 function myfunc(i_p in number) return varchar2;
 3 end mypack;
 4 /

SQL> create or replace package body mypack as
 2 function myfunc(i_p in number) return varchar2 as
 3 d_l varchar2(20);
 4 begin
 5 select mydata into d_l from mytab where myid = i_p;
 6 return d_l;
 7 end;

161

Using PL/SQL With OCI8

 8 end mypack;
 9 /

Triggers
A database trigger is a stored procedure associated with a database table, view, or event. The trigger can be
called after the event, to record it, or take some follow-up action. A trigger can also be called before an
event, to prevent erroneous operations or fix new data so that it conforms to business rules. Triggers were
shown earlier as a way to optimize setting date formats (see Do Not Set the Date Format Unnecessarily in the
chapter on Connecting) and as a way of creating auto-increment columns (see Auto-Increment Columns in
the previous chapter).

Creating PL/SQL Stored Procedures in PHP
Procedures, functions and triggers can be created using PHP. For example, to create the procedure myproc
the code is:

Script 27: createmyproc.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

$plsql = "create or replace procedure "
 . "myproc(d_p in varchar2, i_p in number) as "
 . "begin "
 . "insert into mytab (mydata, myid) values (d_p, i_p);"
 . "end;";
$s = oci_parse($c, $plsql);
$r = oci_execute($s);
if ($r) {
 echo 'Procedure created';
}

?>

Note the last character of the PL/SQL statement is a semi-colon (after PL/SQL keyword end), which is
different to the way SQL statements are terminated.

PHP string concatenation was used to build the statement. If you don't do this and are on Windows,
see the end-of-line terminator issue mentioned below.

Similar to the performance advice on creating tables, avoid creating packages and procedures at
runtime in an application. Pre-create them as part of application installation.

End of Line Terminators in PL/SQL with Windows PHP
On Windows, multi-line PL/SQL blocks won't run if the line terminators are incorrect. The problem
happens when the end of line characters in a multi-line PL/SQL string are Windows carriage-return line-
feeds:

162

Creating PL/SQL Stored Procedures in PHP

$plsql = "create or replace procedure
 myproc(d_p in varchar2, i_p in number) as
 begin
 insert into mytab (mydata, myid) values (d_p, i_p);
 end;";

If showcompilationerrors() function, shown later, is used, its additional messages will show:

PLS-00103: Encountered the symbol "" when expecting one of the following:

This error, with its seemingly empty token representing the unexpected end-of-line syntax, is followed by a
list of keywords or tokens the PL/SQL parser was expecting.

Use one of these solutions to fix the problem:

● Write the PL/SQL code on a single line:

$plsql = "create or replace procedure myproc . . .";

● Use PHP string concatenation with appropriate white space padding between tokens:

$plsql = "create or replace procedure "
 . "myproc(d_p in varchar2, i_p in number) as "
 . "begin "
 . "insert into mytab (mydata, myid) values (d_p, i_p); "
 . "end;";

● Convert the file to use UNIX-style line-feeds with a conversion utility or editor.

Calling PL/SQL Code

Calling PL/SQL Procedures
To invoke the previously created PL/SQL procedure, use BEGIN and END to create an anonymous block:

Script 28: anonplsql.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

$s = oci_parse($c, "begin myproc('Alison', 456); end;");
oci_execute($s);

?>

The block contains a single procedure call, but you could include any number of other PL/SQL statements.
You can also use the SQL CALL statement like:

Script 29: callplsql.php

<?php

163

Using PL/SQL With OCI8

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

$s = oci_parse($c, "call myproc('Chris', 123)");
oci_execute($s);

?>

The call command is actually a SQL command and does not have a trailing semi-colon.

Calling PL/SQL Functions
Calling a PL/SQL function needs a bind variable to hold the return value. Using the function myfunc()
created previously:

Script 30: plsqlfunc.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

$s = oci_parse($c, "begin :ret := mypack.myfunc(123); end;");
oci_bind_by_name($s, ':ret', $r, 20);
oci_execute($s);
echo "Name is: ".$r;
?>

The := token is the assignment operator in PL/SQL. Here it assigns the return value of the function to the
bind variable. The bind call specifies that 20 bytes should be allocated to hold the result. The script output
is:

Name is: Chris

This example also shows how to call a function or procedure inside a package using the syntax
packagename.functionname().

Binding Parameters to Procedures and Functions
PL/SQL procedure and functions arguments can be marked IN, OUT or IN OUT depending on whether data
is being passed into or out of PL/SQL. Single value parameters can be bound in PHP with
oci_bind_by_name(). In the myproc() example the parameters were IN parameters so the code could
be:

$s = oci_parse($c, "call myproc(:data, :id)");
$data = "Chris";
$id = 123
oci_bind_by_name($s, ":data", $data);
oci_bind_by_name($s, ":id", $id);
oci_execute($s);

164

Calling PL/SQL Code

For OUT and IN OUT parameters, make sure the length is specified in the bind call. As mentioned in the
previous chapter, specifying the length for IN binds is often a good idea too, if the one statement is
executed multiple times in a loop.

Array Binding and PL/SQL Bulk Processing
OCI8 1.2 (PHP 5.1.2) introduced a new function, oci_bind_array_by_name(). Used with a PL/SQL
procedure, this can be very efficient for insertion or retrieval, requiring just a single oci_execute() to
transfer multiple values. The following example creates a PL/SQL package with two procedures. The first,
myinsproc(), will be passed a PHP array to insert. It uses Oracle’s “bulk” FORALL statement for fast
insertion. The second procedure, myselproc(), selects back from the table using the BULK COLLECT
clause and returns the array as the OUT parameter p_arr. The p_count parameter is used to make sure PL/
SQL does not try to return more values than the PHP array can handle.

Script 31: arrayinsert.sql

drop table mytab;

create table mytab(name varchar2(20));

create or replace package mypkg as
 type arrtype is table of varchar2(20) index by pls_integer;
 procedure myinsproc(p_arr in arrtype);
 procedure myselproc(p_arr out arrtype, p_count in number);
end mypkg;
/
show errors

create or replace package body mypkg as
 procedure myinsproc(p_arr in arrtype) is
 begin
 forall i in indices of p_arr
 insert into mytab values (p_arr(i));
 end myinsproc;

 procedure myselproc(p_arr out arrtype, p_count in number) is
 begin
 select name bulk collect into p_arr from mytab where rownum <= p_count;
 end myselproc;
end mypkg;
/
show errors

To insert a PHP array $a into mytab, use:

Script 32: arrayinsert.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

165

Using PL/SQL With OCI8

$a = array('abc', 'def', 'ghi', 'jkl');

$s = oci_parse($c, "begin mypkg.myinsproc(:a); end;");
oci_bind_array_by_name($s, ":a", $a, count($a), -1, SQLT_CHR);
oci_execute($s);

?>

The oci_bind_array_by_name() function is similar to oci_bind_by_name(). As well as the upper data
length, it has an extra parameter giving the number of elements in the array. In this example, the number of
elements inserted is count($a). The data length –1 tells PHP to use the actual length of the character data,
which is known to PHP.

To query the table in PHP, the myselproc() procedure can be called. The number of elements
$numelems to be fetched is passed into myselproc() by being bound to :n. This limits the query to return
four rows. The value is also used in the oci_bind_array_by_name() call so the output array $r is
correctly sized to hold the four rows returned. The value 20 is the width of the database column. Any
lower value could result in shorter strings being returned to PHP.

Script 33: arrayfetch.php

<?php

$c = oci_connect("hr", "hrpwd", "localhost/XE");

$numelems = 4;
$s = oci_parse($c, "begin mypkg.myselproc(:p1, :n); end;");
oci_bind_array_by_name($s, ":p1", $r, $numelems, 20, SQLT_CHR);
oci_bind_by_name($s, ":n", $numelems);
oci_execute($s);

var_dump($r); // print the array

?>

The output is:

array(4) {
 [0]=>
 string(3) "abc"
 [1]=>
 string(3) "def"
 [2]=>
 string(3) "ghi"
 [3]=>
 string(3) "jkl"
}

A number of other Oracle types can be bound with oci_array_bind_by_name(), for example SQLT_FLT
for floating point numbers.

There are more examples of oci_bind_array_by_name() in the automated OCI8 tests bundled with
the PHP source code, see ext/oci8/tests.

166

PL/SQL Success With Information Warnings

PL/SQL Success With Information Warnings
A common PL/SQL error when creating packages, procedures or triggers is:

Warning: oci_execute(): OCI_SUCCESS_WITH_INFO: ORA-24344: success with
compilation error

This error is most likely to be seen during development of PL/SQL which is commonly done in SQL*Plus or
SQL Developer. It can also be seen during application installation if PL/SQL packages, procedures or
functions have an unresolved dependency.

PHP code to check for informational errors and warnings is shown in plsqlerr.php. It creates a procedure
referencing a non-existent table and then queries the USER_ERRORS table when the ORA-24344 error
occurs:

Script 34: plsqlerr.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

ini_set('display_errors', false); // do not automatically show PHP errors

// PL/SQL statement with deliberate error: not_mytab does not exist
$plsql = "create or replace procedure
 myproc(d_p in varchar2, i_p in number) as
 begin
 insert into not_mytab (mydata, myid) values (d_p, i_p);
 end;";

$s = oci_parse($c, $plsql);
$r = @oci_execute($s);

if (!$r) {
 $m = oci_error($s);
 if ($m['code'] == 24344) {
 // A PL/SQL "success with compilation error"
 echo "Warning is ", $m['message'], "\n";
 showcompilationerrors($c);
 } else {
 // A normal SQL-style error
 echo "Error is ", $m['message'], "\n";
 }
}

// Display PL/SQL errors
function showcompilationerrors($c)
{
 $s = oci_parse($c, "SELECT NAME || ': ' || ATTRIBUTE
 || ' at character ' || POSITION
 || ' of line ' || LINE || ' - ' || TEXT
 FROM USER_ERRORS
 ORDER BY NAME,LINE,POSITION,ATTRIBUTE,MESSAGE_NUMBER");
 oci_execute($s);

167

Using PL/SQL With OCI8

 print "<pre>\n";
 while ($row = oci_fetch_array($s, OCI_ASSOC+OCI_RETURN_NULLS)) {
 foreach ($row as $item) {
 print ($item?htmlentities($item):"");
 }
 print "\n";
 }
 print "</pre>";
}

?>

This displays:

Warning is ORA-24344: success with compilation error
MYPROC: ERROR at character 13 of line 4 - PL/SQL: SQL Statement ignored
MYPROC: ERROR at character 25 of line 4 - PL/SQL: ORA-00942: table or view does
not exist

Looking at the PL/SQL code creating the procedure, character 13 on line 4 of the PL/SQL code is the
INSERT statement. Character 25 is the table name not_mytab.

Your output may also include errors from creating earlier blocks. You can insert a WHERE clause before
the ORDER BY to restrict the error messages:

 where name = 'MYPROC'

Using REF CURSORS for Result Sets
REF CURSORS let you return a set of query results to PHP - think of them like a pointer to results. In PHP
you bind an OCI_B_CURSOR variable to a PL/SQL REF CURSOR procedure parameter and retrieve the
rows of the result set in a normal fetch loop.

As an example, we create a PL/SQL package with a procedure that queries the employees table. The
procedure returns a REF CURSOR containing the employees’ last names.

The PL/SQL procedure contains the code:

Script 35: refcur1.sql

create or replace procedure myproc(p1 out sys_refcursor) as
begin
 open p1 for select last_name from employees where rownum <= 5;
end;
/
show errors

In PHP the oci_new_cursor() function returns a REF CURSOR resource. This is bound to :rc in the call
to myproc(). The bind size of -1 means “ignore the size passed”. It is used because the size of the REF
CURSOR is fixed by Oracle. Once the PL/SQL procedure has completed then the value in $refcur is
treated like a prepared statement identifier. It is simply executed like a normal query and used in a fetch
loop.

168

Using REF CURSORS for Result Sets

Script 36: refcur1.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

// Excute the call to the PL/SQL stored procedure
$s = oci_parse($c, "call myproc(:rc)");
$refcur = oci_new_cursor($c);
oci_bind_by_name($s, ':rc', $refcur, -1, OCI_B_CURSOR);
oci_execute($s);

// Execute and fetch from the cursor
oci_execute($refcur); // treat as a statement resource
echo "<table border='1'>\n";
while($row = oci_fetch_array($refcur, OCI_ASSOC)) {
 echo "<tr>";
 foreach ($row as $c) {
 echo "<td>$c</td>";
 }
 echo "</tr>\n";
}
echo "</table>\n";

?>

The output is:

Abel
Ande
Atkinson
Austin
Baer

This next example uses a user-defined type for the REF CURSOR, making the cursor “strongly typed”. The
type is declared in a package specification.

Script 37: refcur2.sql

create or replace package emp_pack as

 type contact_info_type is record (
 fname employees.first_name%type,
 lname employees.last_name%type,
 phone employees.phone_number%type,
 email employees.email%type);

 type contact_info_cur_type is ref cursor return contact_info_type;

 procedure get_contact_info(
 p_emp_id in number,
 p_contact_info out contact_info_cur_type);

169

Using PL/SQL With OCI8

end emp_pack;
/
show errors

create or replace package body emp_pack as

 procedure get_contact_info(
 p_emp_id in number,
 p_contact_info out contact_info_cur_type) as
 begin
 open p_contact_info for
 select first_name, last_name, phone_number, email
 from employees
 where employee_id = p_emp_id;
 end;

end emp_pack;
/
show errors

The PHP code is very similar to refcur1.php, except in the call to the procedure. The procedure name has
changed and, for this example, an employee identifier of 188 is used.

$s = oci_parse($c, "call emp_pack.get_contact_info(188, :rc)");
$refcur = oci_new_cursor($c);
oci_bind_by_name($s, ':rc', $refcur, -1, OCI_B_CURSOR);
oci_execute($s);

// Execute and fetch from the cursor
oci_execute($refcur); // treat as a statement resource
. . .

The output is the record for employee 188. The four values match the contact_info_type:

Kelly Chung 650.505.1876 KCHUNG

Closing Cursors
To avoid running out of Oracle cursors (which have a database-configured, per-session limit
open_cursors set by the DBA), make sure to explicitly free cursors. The example in refcur3.php is a script
that implicitly creates cursors.

Script 38: refcur3.php

<?php

// Create a table with 400 rows
function initialize($c)
{
 $stmtarray = array("drop table mytab",
 "create table mytab(col1 varchar2(1))");

170

Using REF CURSORS for Result Sets

 foreach ($stmtarray as $stmt) {
 $s = oci_parse($c, $stmt);
 @oci_execute($s);
 }

 $s = oci_parse($c, "insert into mytab values ('A')");
 for ($i = 0; $i < 400; ++$i) {
 oci_execute($s);
 }
}

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

initialize($c);

$s = oci_parse($c, 'select cursor(select * from dual) from mytab');
oci_execute($s);
while ($refcur = oci_fetch_array($s, OCI_NUM)) { // get each REF CURSOR
 oci_execute($refcur[0]); // execute the REF CURSOR
 while ($row = oci_fetch_array($refcur[0], OCI_NUM)) {
 foreach ($row as $item)
 echo "$item ";
 echo "\n";
 }
 oci_free_statement($refcur[0]); // free the ref cursor
}

?>

The query is contrived. The outer select from MYTAB returns not rows, but a CURSOR per row of MYTAB.
Those cursors each represent the result from the inner query. That is, there are 400 queries from the DUAL
table. The outer while loop fetches each of the 400 REF CURSORs in turn. The inner while loop fetches
from each REF CURSOR. The result is a stream of X's (which is the single row of data in DUAL) being
displayed:

X
X
X
. . .

This script works, but if the oci_free_statement() line is commented out:

// oci_free_statement($refcur[0]); // free the ref cursor

then the script can reach the database limit on the number of cursors. After some iterations through the
loop, an error is displayed:

PHP Warning:oci_fetch_array(): ORA-00604: error occurred at recursive SQL level 1
ORA-01000: maximum open cursors exceeded

The number of iterations before getting the messages depends on the database configuration parameter
open_cursors.

171

Using PL/SQL With OCI8

In Oracle Database XE you can monitor the number of cursors that each PHP connection has open by
logging into Oracle Application Express as the system user and navigating to Administration > Monitor >
Sessions > Open Cursors.

Converting from REF CURSOR to PIPELINED Results
Records returned by REF CURSORS cannot currently take advantage of row pre-fetching. For performance
critical sections of code, evaluate alternatives such as doing direct queries, writing a wrapping function in
PL/SQL that has types that can be bound with oci_bind_array_by_name(), or writing a wrapping
function that pipelines the output. A pipelined PL/SQL function gives the ability to select from the function
as if it were a table.

To convert the myproc() procedure from refcur1.sql to return pipelined data, create a package:

Script 39: rc2pipeline.sql

create or replace package myplmap as
 type outtype is record (-- structure of the ref cursor in myproc
 last_name varchar2(25)
);
 type outtype_set is table of outtype;
 function maprctopl return outtype_set pipelined;
end;
/
show errors

create or replace package body myplmap as
 function maprctopl return outtype_set pipelined is
 outrow outtype_set;
 p_rc sys_refcursor;
 batchsize pls_integer := 20; -- fetch batches of 20 rows at a time
 begin
 myproc(p_rc); -- call the original procedure
 loop
 fetch p_rc bulk collect into outrow limit batchsize;
 for i in 1 .. outrow.count() loop
 pipe row (outrow(i));
 end loop;
 exit when outrow.count < batchsize;
 end loop;
 end maprctopl;
end myplmap;
/
show errors

This calls myproc() and pipes each record. It can be called in PHP using a simple query with the table
operator:

Script 40: rc2pipeline.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

172

Using REF CURSORS for Result Sets

$s = oci_parse($c, "select * from table(myplmap.maprctopl())");
oci_execute($s);
oci_fetch_all($s, $res);
var_dump($res);

?>

If the REF CURSOR query in myproc() selected all columns, then outtype_set could simply be have
been declared as:

type outtype_set is table of employees%rowtype;

Oracle Collections in PHP
Many programming techniques use collection types such as arrays, bags, lists, nested tables, sets, and trees.
To support these techniques in database applications, PL/SQL provides the datatypes TABLE and VARRAY,
which allow you to declare index-by tables, nested tables, and variable-size arrays.

A collection is an ordered group of elements, all of the same type. Each element has a unique subscript
that determines its position in the collection. Collections work like the arrays found in most third-
generation programming languages. Also, collections can be passed as parameters. So, you can use them to
move columns of data into and out of database tables or between client-side applications and stored
subprograms.

Oracle collections are manipulated in PHP by methods on a collection resource, which is allocated with
oci_new_collection().

In a simple email address book demonstration, two VARRAYs are created, one for an array of people’s
names, and one for an array of email addresses. VARRAYs (short for variable-size arrays) use sequential
numbers as subscripts to access a fixed number of elements.

Script 41: addressbook.sql

drop table emails;

create table emails (
 user_id varchar2(10),
 friend_name varchar2(20),
 email_address varchar2(20));

create or replace type email_array as varray(100) of varchar2(20);
/
show errors

create or replace type friend_array as varray(100) of varchar2(20);
/
show errors

create or replace procedure update_address_book(
 p_user_id in varchar2,
 p_friend_name friend_array,
 p_email_addresses email_array)

173

Using PL/SQL With OCI8

is
begin
 delete from emails where user_id = p_user_id;
 forall i in indices of p_email_addresses
 insert into emails (user_id, friend_name, email_address)
 values (p_user_id, p_friend_name(i), p_email_addresses(i));
end update_address_book;
/
show errors

The update_address_book() procedure loops over all elements of the address collection and inserts each
one and its matching name.

The updateaddresses.php code creates a collection of names and a collection of email addresses using the
append() method to add elements to each array. These collections are bound as OCI_B_NTY (“named
type”) to the arguments of the PL/SQL address_book() call. The size -1 is used because Oracle internally
knows the size of the type. When address_book() is executed, the names and email addresses are
inserted into the database.

Script 42: updateaddresses.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

$user_name = 'cjones';
$friends_names = array('alison', 'aslam');
$friends_emails = array('alison@example.com', 'aslam@example.com');

$friend_coll = oci_new_collection($c, 'FRIEND_ARRAY');
$email_coll = oci_new_collection($c, 'EMAIL_ARRAY');
for ($i = 0; $i < count($friends_names); ++$i) {
 $friend_coll->append($friends_names[$i]);
 $email_coll->append($friends_emails[$i]);
}

$s = oci_parse($c, "begin update_address_book(:un, :friends, :emails); end;");

oci_bind_by_name($s, ':un', $user_name);
oci_bind_by_name($s, ':friends', $friend_coll, -1, OCI_B_NTY);
oci_bind_by_name($s, ':emails', $email_coll, -1, OCI_B_NTY);

oci_execute($s);

?>

The emails table now has the inserted data:

SQL> select * from emails;

USER_ID FRIEND_NAME EMAIL_ADDRESS
---------- -------------------- --------------------
cjones alison alison@example.com

174

Oracle Collections in PHP

cjones aslam aslam@example.com

Other OCI8 collection methods allow accessing or copying data in a collection. See the PHP manual for
more information.

Using PL/SQL and SQL Object Types in PHP
Sometime you have to work with Oracle object types or call PL/SQL procedures that are designed for
interacting with other PL/SQL code. Previous sections have introduced some methods. This section gives
more examples. It is a brief guide, and not exhaustive. Also, some techniques will work better in some
situations than in others.

The first example simulates the Oracle Text CTX_THES package procedures. These return Oracle object
types. (Oracle Text is a database component that uses standard SQL to index, search, and analyze text and
documents stored in the database, in files, and on the web. It can perform linguistic analysis on documents,
as well as search text using a variety of strategies including keyword searching, context queries).

This example, ctx.sql, sets up an example package with a similar interface to CTX_THES. Here it just
returns random data in the parameter:

Script 43: ctx.sql

-- Package "SuppliedPkg" simulates Oracle Text's CTX_THES.
-- It has a procedure that returns a PL/SQL type.
create or replace package SuppliedPkg as
 type SuppliedRec is record (
 id number,
 data varchar2(100)
);
 type SuppliedTabType is table of SuppliedRec index by binary_integer;
 procedure SuppliedProc(p_p in out nocopy SuppliedTabType);
end SuppliedPkg;
/
show errors

create or replace package body SuppliedPkg as
 procedure SuppliedProc(p_p in out nocopy SuppliedTabType) is
 begin
 -- Create some random data
 p_p.delete;
 for i in 1..5 loop
 p_p(i).id := i;
 p_p(i).data := 'Random: ' || i || (1+ABS(MOD(dbms_random.random,100000)));
 end loop;
 end SuppliedProc;
end SuppliedPkg;
/
show errors

Run the file ctx.sql in SQL*Plus:

$ sqlplus hr/hrpwd@localhost/XE @ctx.sql

175

Using PL/SQL With OCI8

This is the “fixed” part of the problem, representing the pre-supplied functionality you need to work with.

Using OCI8 Collection Functions
To call SuppliedProc() using collection functions, create a wrapper function in PL/SQL to convert the
PL/SQL type SuppliedTabType to a pair of SQL types. Use SQL*Plus to run myproc.sql:

Script 44: myproc.sql

-- Create a wrapper procedure that calls the pre-supplied
-- SuppliedProc() and converts its output to SQL types.

create or replace type MyIdRec as table of number;
/
show errors

create or replace type MyDataRec as table of varchar2(100);
/
show errors

create or replace procedure MyProc
 (p_id in out MyIdRec, p_data in out MyDataRec)
as
 l_results SuppliedPkg.SuppliedTabType;
begin

 -- get results from existing procedure
 SuppliedPkg.SuppliedProc(l_results);

 -- copy to a type we can pass back to PHP
 p_id.delete;
 p_data.delete;
 for i in 1..l_results.count loop
 p_id.extend;
 p_id(i) := l_results(i).id;
 p_data.extend;
 p_data(i) := l_results(i).data;
 end loop;

end MyProc;
/
show errors

Now you can call MyProc():

Script 45: ctx.php

<?php

$c = oci_connect("hr", "hrpwd", "localhost/XE");

$s = oci_parse($c, 'begin MyProc(:res_id, :res_data); end;');
$res_id = oci_new_collection($c, 'MYIDREC');

176

Using PL/SQL and SQL Object Types in PHP

$res_data = oci_new_collection($c, 'MYDATAREC');

oci_bind_by_name($s, ':res_id', $res_id, -1, OCI_B_NTY);
oci_bind_by_name($s, ':res_data', $res_data, -1, OCI_B_NTY);
oci_execute($s);

for ($i = 0; $i < $res_id->size(); $i++) {
 $id = $res_id->getElem($i);
 $data = $res_data->getElem($i);
 echo "Id: $id, Data: $data
\n";
}

?>

This allocates two collections and binds them as the parameters to MyProc(). After MyProc() has been
called, the collection method getElem() is used to access each value returned. The output is similar to:

Id: 1, Data: Random: 155942
Id: 2, Data: Random: 247783
Id: 3, Data: Random: 365553
Id: 4, Data: Random: 487553
Id: 5, Data: Random: 589879

Using a REF CURSOR
If the data can be converted to a REF CURSOR, a straightforward query can be used to fetch results. This
example shows an object type. The procedure mycreatedata() creates the original data. When it is
called, it returns an object table containing five rows.

Script 46: object.sql

drop type mytabletype;
drop type mytype;

create or replace type mytype as object (myid number, mydata varchar2(20));
/
show errors

create or replace type mytabletype as table of mytype;
/
show errors

create or replace procedure mycreatedata(outdata out mytabletype) as
begin
 outdata := mytabletype();
 for i in 1..5 loop
 outdata.extend;
 outdata(i) := mytype(i * 2, 'some name ' || i);
 end loop;
end;
/
show errors

177

Using PL/SQL With OCI8

Data of type mytabletype can be converted to a REF CURSOR using a wrapper function:

Script 47: objectrc.sql

create or replace procedure mywrapper1(rc out sys_refcursor) as
 origdata mytabletype;
begin
 mycreatedata(origdata); -- create some values
 open rc for select * from table(cast(origdata as mytabletype));
end mywrapper1;
/
show errors

This can be called in PHP like:

Script 48: objectrc.php

<?php

$c = oci_connect("hr", "hrpwd", "localhost/XE");

$s = oci_parse($c, "begin mywrapper1(:myrc); end;");
$rc = oci_new_cursor($c);
oci_bind_by_name($s, ':myrc', $rc, -1, OCI_B_CURSOR);
oci_execute($s);
oci_execute($rc);
oci_fetch_all($rc, $res);
var_dump($res);

?>

The output is:

array(2) {
 ["MYID"]=>
 array(5) {
 [0]=>
 string(1) "2"
 [1]=>
 string(1) "4"
 [2]=>
 string(1) "6"
 [3]=>
 string(1) "8"
 [4]=>
 string(2) "10"
 }
 ["MYDATA"]=>
 array(5) {
 [0]=>
 string(11) "some name 1"
 [1]=>
 string(11) "some name 2"
 [2]=>

178

Using PL/SQL and SQL Object Types in PHP

 string(11) "some name 3"
 [3]=>
 string(11) "some name 4"
 [4]=>
 string(11) "some name 5"
 }
}

Oracle's lack of pre-fetching for REF CURSORS needs to be considered if performance is important. Using
a PIPELINED function or array bind can be much faster.

Binding an Array
An alternative solution lets you use the fast oci_bind_array_by_name() function. The wrapper
procedure looks like:

Script 49: objectba.sql

create or replace procedure mywrapper2(
 pempno out dbms_sql.number_table,
 pename out dbms_sql.varchar2_table) as origdata mytabletype;
begin
 mycreatedata(origdata); -- create some values
 select myid, mydata
 bulk collect into pempno, pename
 from table(cast(origdata as mytabletype));
end mywrapper2;
/
show errors

This can be called from PHP with:

Script 50: obejctba.php

<?php

$c = oci_connect("hr", "hrpwd", "localhost/XE");

$s = oci_parse($c, "begin mywrapper2(:myid, :mydata); end;");
oci_bind_array_by_name($s, ":myid", $myid, 10, -1, SQLT_INT);
oci_bind_array_by_name($s, ":mydata", $mydata, 10, 20, SQLT_CHR);
oci_execute($s);

var_dump($myid);
var_dump($mydata);

?>

This technique can be used when the number of items to return is known. The output is:

array(5) {
 [0]=>
 int(2)
 [1]=>

179

Using PL/SQL With OCI8

 int(4)
 [2]=>
 int(6)
 [3]=>
 int(8)
 [4]=>
 int(10)
}
array(5) {
 [0]=>
 string(11) "some name 1"
 [1]=>
 string(11) "some name 2"
 [2]=>
 string(11) "some name 3"
 [3]=>
 string(11) "some name 4"
 [4]=>
 string(11) "some name 5"
}

Using a PIPELINED Function
The wrapper function to convert to a PIPELINED function is:

Script 51: objectpl.sql

create or replace package myplpkg as
 type plrow is table of mytype;
 function mywrapper3 return plrow pipelined;
end;
/
show errors

create or replace package body myplpkg as
 function mywrapper3 return plrow pipelined is
 origdata mytabletype;
 begin
 mycreatedata(origdata); -- create some values
 for i in 1 .. origdata.count() loop
 pipe row (origdata(i));
 end loop;
 end mywrapper3;
end myplpkg;
/
show errors

This can be called from PHP with:

Script 52: objectpl.php

<?php

180

Using PL/SQL and SQL Object Types in PHP

$c = oci_connect("hr", "hrpwd", "localhost/XE");

$s = oci_parse($c, "select * from table(myplpkg.mywrapper3())");
oci_execute($s);
oci_fetch_all($s, $res);
var_dump($res);

?>

The output is the same as from objectrc.php.

Getting Output with DBMS_OUTPUT
The DBMS_OUTPUT package is the standard way to “print” output from PL/SQL. The drawback is that it is
not asynchronous. The PL/SQL procedure or block that calls DBMS_OUTPUT runs to completion before any
output is returned to the user.

DBMS_OUTPUT is like a buffer. Your code turns on buffering, calls something that puts output in the
buffer, and then later fetches from the buffer. Other database connections cannot access your buffer.

A basic way to fetch DBMS_OUTPUT in PHP is to bind an output string to the PL/SQL
dbms_output.get_line() procedure:

$s = oci_parse($c, "begin dbms_output.get_line(:ln, :st); end;");
oci_bind_by_name($s, ":ln", $ln, 255); // output line
oci_bind_by_name($s, ":st", $st, -1, SQLT_INT); // status: 1 means no more lines
while (($succ = oci_execute($s)) && !$st) {
 echo "$ln\n";
}

The variable :ln is arbitrarily bound as length 255. This was the DBMS_OUTPUT line size limit prior to
Oracle Database 10g Release 10.2, when it was then changed to 32Kb. (The limitation on the number of
lines was also raised). Avoid binding 32Kb, especially if the database is running in Oracle’s shared server
mode. If you bind this size, then it is easy to slow performance or get memory errors. However, if you bind
less than the full size, make sure your application does not print wider lines.

Alternatively, you can use oci_bind_array_by_name() and call another DBMS_OUTPUT package that
returns multiple lines, get_lines(). The performance of this is generally better but it does depend on
how big the bind array is, how much data is returned and how the code is structured. In the worst case it
might be slower than the simple code, so benchmark your application carefully.

A more consistent and fast DBMS_OUTPUT fetching implementation uses a custom pipelined PL/SQL
function. In SQL*Plus create the function:

Script 53: dbmsoutput.sql

create or replace type dorow as table of varchar2(4000);
/
show errors

create or replace function mydofetch return dorow pipelined is
 line varchar2(4000);
 status integer;
begin

181

Using PL/SQL With OCI8

 loop
 dbms_output.get_line(line, status);
 exit when status = 1;
 pipe row (line);
 end loop;
 return;
end;
/
show errors

Because we will fetch the data in a query as a SQL string, the maximum length is 4000 bytes.
A function to turn on output buffering is shown in dbmsoutput.inc along with getdbmsoutput() which

returns an array of the output lines:

Script 54: dbmsoutput.inc

<?php

// Turn DBMS_OUTPUT on
function enabledbmsoutput($c)
{
 $s = oci_parse($c, "begin dbms_output.enable(null); end;");
 $r = oci_execute($s);
 return $r;
}
// Returns an array of DBMS_OUTPUT lines
function getdbmsoutput($c)
{
 $res = false;
 $s = oci_parse($c, "select * from table(mydofetch())");
 oci_execute($s);
 oci_fetch_all($s, $res);
 return $res['COLUMN_VALUE'];
}

?>

The next script uses these functions to show “printing” output from PL/SQL blocks:

Script 55: dbmsoutput.php

<?php

include("dbmsoutput.inc");

$c = oci_connect("hr", "hrpwd", "localhost/XE");

// Turn output buffering on
enabledbmsoutput($c);

// Create some output
$s = oci_parse($c, "call dbms_output.put_line('Hello, world!')");
oci_execute($s);

182

Getting Output with DBMS_OUTPUT

// Create more output
// Any PL/SQL code being run can insert into the output buffer
$s = oci_parse($c, "begin
 dbms_output.put_line('Hello again');
 dbms_output.put_line('Hello finally');
 end;");
oci_execute($s);

// Display the output
$output = getdbmsoutput($c);
if ($output) {
 foreach ($output as $line) {
 echo "$line
\n";
 }
}

?>

The output is all the dbms_output.put_line() text:

Hello, world!
Hello again
Hello finally

If you expect large amounts of output, you may want to stream results as they are fetched from the
database instead of returning them in one array from getdbmsoutput().

If DBMS_OUTPUT does not suit your application, you can also get output from PL/SQL by logging it to
database tables or by using packages like UTL_FILE and DBMS_PIPE to asynchronously display output to a
separate terminal window.

PL/SQL Function Result Cache
Oracle Database 11g introduced a cache for PL/SQL function results, ideal for repeated lookup operations.
The cache contains the generated result of a previous function call. If the function is re-run with the same
parameter values, the result from the cache is returned immediately without needing to re-execute the
code. The cached results are available to any user. The cache will age out results if more memory is
required.

There are some restrictions including that only basic types can be used for parameters, and they must
be IN only. Return types are similar restricted, in particular not using REF CURSOR or PIPELINED results.

To use the cache, a normal function is created with the result_cache option:

Script 56: frc.sql

create or replace function mycachefunc(p_id in varchar2) return varchar2
result_cache relies_on(mytab)
as
 l_data varchar2(40);
begin
 select mydata into l_data from mytab where myid = p_id;
 return l_data;

183

Using PL/SQL With OCI8

end;
/
show errors

The relies_on() clause is a comma separated list of tables. If any of these tables change, than the cache is
automatically invalidated by Oracle. The next time the function is called, it will execute completely and
update the cache appropriately.

See the Oracle Database PL/SQL Language Reference 11g Release 1 (11.1) manual for more details about the
feature.

Using Oracle Locator for Spatial Mapping
Oracle Locator is a subset of Oracle Spatial, a comprehensive mapping library. Oracle Locator is powerful
itself and is available in all Oracle Database editions. A great introduction to Oracle Locator is in the Oracle
Database Express Edition 2 Day Plus Locator Developer Guide.
This section shows some techniques to use Locator data in PHP. Oracle Locator makes use of PL/SQL types
such as collections. These can not always be directly fetched into PHP.

The examples use the tables shown in the Oracle Database Express Edition 2 Day Plus Locator Developer
Guide sample scenario. Create these tables in SQL*Plus before continuing:
http://download.oracle.com/docs/cd/B25329_01/doc/appdev.102/b28004/xe_locator.ht
m#CIHEAIGJ

Inserting Locator Data
Inserting Locator data is simply a matter of executing the appropriate INSERT statement:

$sql = "insert into customers values
 (100, 'A', 'B',
 '111 Reese Ave', 'Chicago', 'IL', 12345,
 SDO_GEOMETRY(2001,
 8307,
 SDO_POINT_TYPE(-69.231445,12.001254,NULL), NULL, NULL))";
$s = oci_parse($c, $sql);
oci_execute($s);

Queries Returning Scalar Values
Before fetching data, determine if this is, in fact, necessary. Often the data can be processed in Oracle SQL
or PL/SQL efficiently and easily.

Queries returning scalar values from Locator objects are no different to other PHP queries. This
example finds the three closest customers to the store with CUSTOMER_ID of 101. The query uses the in-
built Spatial function SOD_NN() to determine the nearest neighbor relationship.

Script 57: loc1.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

184

Using Oracle Locator for Spatial Mapping

$sql = "select /*+ ordered */
 c.customer_id,
 c.first_name,
 c.last_name
 from stores s, customers c
 where s.store_id = :sid
 and sdo_nn(c.cust_geo_location, s.store_geo_location, :nres) = 'TRUE'";

$s = oci_parse($c, $sql);

$sid = 101;
$nres = 'sdo_num_res=3'; // return 3 results

oci_bind_by_name($s, ":sid", $sid);
oci_bind_by_name($s, ":nres", $nres);
oci_execute($s);
oci_fetch_all($s, $res);
var_dump($res);

?>

The output is:

array(3) {
 ["CUSTOMER_ID"]=>
 array(3) {
 [0]=>
 string(4) "1001"
 [1]=>
 string(4) "1003"
 [2]=>
 string(4) "1004"
 }
 ["FIRST_NAME"]=>
 array(3) {
 [0]=>
 string(9) "Alexandra"
 [1]=>
 string(6) "Marian"
 [2]=>
 string(6) "Thomas"
 }
 ["LAST_NAME"]=>
 array(3) {
 [0]=>
 string(7) "Nichols"
 [1]=>
 string(5) "Chang"
 [2]=>
 string(8) "Williams"
 }
}

185

Using PL/SQL With OCI8

The CUSTOMER_ID, FIRST_NAME and LAST_NAME columns are scalar NUMBER and VARCHAR2 columns
returned directly into a PHP array.

Selecting Vertices Using SDO_UTIL.GETVERTICES
For some Locator types, in-built functions will convert objects to scalar values that can be returned to PHP.
For example, to fetch the coordinates from a geometry for customer 1001, use the inbuilt
SDO_UTIL.GETVERTICES() function:

Script 58: loc2.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

$sql = "select t.x, t.y
 from customers,
 table(sdo_util.getvertices(customers.cust_geo_location)) t
 where customer_id = :cid";

$s = oci_parse($c, $sql);
$cid = 1001;
oci_bind_by_name($s, ":cid", $cid);
oci_execute($s);
oci_fetch_all($s, $res);
var_dump($res);

?>

The output is:

array(2) {
 ["X"]=>
 array(1) {
 [0]=>
 string(9) "-71.48923"
 }
 ["Y"]=>
 array(1) {
 [0]=>
 string(8) "42.72347"
 }
}

Using a Custom Function
Sometimes you may need to create a PL/SQL function to decompose spatial data into simple types to
return them to PHP. This example uses the COLA_MARKETS table from example 1-8 of the Oracle Database
Express 2 Day Plus Locator Developer Guide:
http://download.oracle.com/docs/cd/B25329_01/doc/appdev.102/b28004/xe_locator.ht
m#CIHEBIDA

186

Using Oracle Locator for Spatial Mapping

Before continuing, execute the three statements given in the manual to create the table, insert the meta-data
into user_sdo_geom_metadata table, and create the index.

Next, insert a sample row. The row describes a polygon of (x,y) ordinates which are given as pairs in
the SDO_ORDINATE_ARRAY array:

Script 59: cm1.sql

insert into cola_markets values (
 301, -- market ID number
 'polygon',
 sdo_geometry (
 2003, -- two-dimensional polygon
 null,
 null,
 sdo_elem_info_array(1,1003,1), -- one polygon (exterior polygon ring)
 sdo_ordinate_array(5,1, 8,1, 8,6, 5,7, 5,1) -- list of X,Y coordinates
)
);

commit;

A decomposition function helps query the coordinates in PHP. Note the alias cm (an alias here is also
known as a correlation name) for the table in the query. This allows the sdo_ordinates collection to be
included as a select column:

Script 60: cm2.sql

create or replace procedure myproc(p_id in number, p_o out sdo_ordinate_array) as
 begin
 select cm.shape.sdo_ordinates
 into p_o
 from cola_markets cm
 where mkt_id = p_id;
 end;
/
show errors

The coordinates can now be retrieved in PHP as a collection:

Script 61: cm.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

$s = oci_parse($c, "begin myproc(:id, :ords); end;");
$id = 301;
oci_bind_by_name($s, ":id", $id);
$ords = oci_new_collection($c, "SDO_ORDINATE_ARRAY");
oci_bind_by_name($s, ":ords", $ords, -1, OCI_B_NTY);
oci_execute($s);

for ($i = 0; $i < $ords->size(); $i++) {

187

Using PL/SQL With OCI8

 $v = $ords->getElem($i);
 echo "Value: $v\n";
}

?>

The output is the list of coordinates that were inserted in the SDO_ORDINATE_ARRAY:

Value: 5
Value: 1
Value: 8
Value: 1
Value: 8
Value: 6
Value: 5
Value: 7
Value: 5
Value: 1

Similar techniques to these example given, or those techniques in the earlier section Using PL/SQL and SQL
Object Types in PHP can be used to fetch other Locator data, if required.

Scheduling Background or Long Running Operations
Sometimes a web page starts a database operation that can run in the background while the user continues
other work.

For example, there might be some database cleanup to be run periodically. Another example is when a
user of a photo site decides to change the name of a tag associated with images. The photo site application
might initiate the name change, but return the user an HTML page saying Your request is being
processed and will soon complete. The user can continue viewing photos without having to wait
for the renaming process to complete. This technique can improve user satisfaction. It can also free up an
Apache server that would otherwise be blocked, allowing it to be used by another page request.

The DBMS_SCHEDULER package can be used to start background database tasks. It has a lot of
functionality, including allowing tasks to be repeated at intervals, or started when events are received. It
can also be used to invoke operating system programs. In Oracle 9i, the DBMS_JOB package can be used
instead of DBMS_SCHEDULER.

For the photo site example, create some data with the incorrect tag weeding:

Script 62: dschedinit.sql

connect system/systempwd

grant create job to hr;

connect hr/hrpwd

drop table tag_table;

create table tag_table (tag varchar2(20), photo_id number);
insert into tag_table values ('weeding', 2034);

188

Scheduling Background or Long Running Operations

insert into tag_table values ('weeding', 2035);
insert into tag_table values ('sanfrancisco', 4540);
commit;

To change the tag weeding to wedding, a procedure changetagname() can be created:

Script 63: dbsched.sql

create or replace procedure changetagname(old in varchar2, new in varchar2) as
 b number;
begin
 for i in 1..100000000 loop b := 1; end loop; -- simulate slow transaction
 update tag_table set tag = new where tag = old;
 commit;
end;
/
show errors

This script creates a sample table and the procedure to update tags. The procedure is artificially slowed
down to simulate a big, long running database operation.

The following PHP script uses an anonymous block to create a job calling changetagname().

Script 64: dsched.php

<?php

$c = oci_connect("hr", "hrpwd", "localhost/XE");

function doquery($c)
{
 $s = oci_parse($c, "select tag from tag_table");
 oci_execute($s);
 oci_fetch_all($s, $res);
 var_dump($res);
}

// Schedule a task to change a tag name from 'weeding' to 'wedding'

$stmt =
"begin
 dbms_scheduler.create_job(
 job_name => :jobname,
 job_type => 'STORED_PROCEDURE',
 job_action => 'changetagname', // procedure to call
 number_of_arguments => 2);
 dbms_scheduler.set_job_argument_value (
 job_name => :jobname,
 argument_position => 1,
 argument_value => :oldval);
 dbms_scheduler.set_job_argument_value (
 job_name => :jobname,
 argument_position => 2,
 argument_value => :newval);
 dbms_scheduler.enable(:jobname);

189

Using PL/SQL With OCI8

end;";

$s = oci_parse($c, $stmt);

$jobname = uniqid('ut');
$oldval = 'weeding';
$newval = 'wedding';
oci_bind_by_name($s, ":jobname", $jobname);
oci_bind_by_name($s, ":oldval", $oldval);
oci_bind_by_name($s, ":newval", $newval);

oci_execute($s);

echo "<pre>Your request is being processed and will soon complete\n";
doquery($c); // gives old results
sleep(10);
echo "Your request has probably completed\n";
doquery($c); // gives new results

?>

The PHP call to the anonymous PL/SQL block returns quickly. The background PL/SQL call to
changetagname() will take several more seconds to complete (because of its for loop), so the first
doquery() output shows the original, incorrect tag values. Then, after PHP has given the job time to
conclude, the second doquery() call shows the updated values:

Your request is being processed and will soon complete
array(1) {
 ["TAG"]=>
 array(3) {
 [0]=>
 string(7) "weeding"
 [1]=>
 string(7) "weeding"
 [2]=>
 string(12) "sanfrancisco"
 }
}
Your request has probably completed
array(1) {
 ["TAG"]=>
 array(3) {
 [0]=>
 string(7) "wedding"
 [1]=>
 string(7) "wedding"
 [2]=>
 string(12) "sanfrancisco"
 }
}

190

Reusing Procedures Written for MOD_PLSQL

Reusing Procedures Written for MOD_PLSQL
Oracle's mod_plsql gateway allows a Web browser to invoke a PL/SQL stored subprogram through an HTTP
listener. This is the interface used by Oracle Application Express. Existing user-created PL/SQL procedures
written for this gateway can be called from PHP using a wrapper function. For example, consider a stored
procedure for mod_plsql that was created in SQL*Plus:

Script 65: myowa.sql

create or replace procedure myowa as
begin
 htp.htmlOpen;
 htp.headOpen;
 htp.title('Greeting Title');
 htp.headClose;
 htp.bodyOpen;
 htp.header(1, 'Salutation Heading');
 htp.p('Hello, world!');
 htp.bodyClose;
 htp.htmlClose;
end;
/
show errors

This generates HTML output to the gateway:

<HTML>
<HEAD>
<TITLE>Greeting Title</TITLE>
</HEAD>
<BODY>
<H1>Salutation Heading</H1>
Hello, world!
</BODY>
</HTML>

To reuse the procedure directly in PHP, use SQL*Plus to create a mapping function that pipes the output
from the HTP calls:

Script 66: mymodplsql.sql
create or replace type modpsrow as table of varchar2(512);
/
show errors

create or replace function mymodplsql(proc varchar2) return modpsrow pipelined is
 param_val owa.vc_arr;
 line varchar2(256);
 irows integer;
begin
 owa.init_cgi_env(param_val);
 htp.init;
 execute immediate 'begin '||proc||'; end;';
 loop

191

Using PL/SQL With OCI8

 line := htp.get_line(irows);
 exit when line is null;
 pipe row (line);
 end loop;
 return;
end;
/
show errors

This is fundamentally similar to the previous pipelined examples.
In modpsrow() you can optionally use param_val to set CGI values. See the definition of

init.cgi_env() in $ORACLE_HOME/rdbms/admin/privowa.sql for details.
In PHP, the new wrapper can be called like:

Script 67: mymodplsql.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

$stmt = oci_parse($c, 'select * from table(mymodplsql(:proc))');
$func = 'myowa';
oci_bind_by_name($stmt, ':proc', $func);

oci_execute($stmt);

$content = false;
while ($row = oci_fetch_array($stmt, OCI_ASSOC)) {
 if ($content) {
 print $row["COLUMN_VALUE"];
 } else {
 if ($row["COLUMN_VALUE"] == "\n")
 $content = true;
 else
 header($row["COLUMN_VALUE"]);
 }
}

?>

When called in a browser, the output is the expected rendition of the HTML fragment shown earlier.

192

CHAPTER 12

USING LARGE OBJECTS IN OCI8
Oracle Character Large Object (CLOB) and Binary Large Object (BLOB) types can contain very large
amounts of data. They can be used for table columns and for PL/SQL variables. There are various creation
options to specify optimal Oracle table storage. A pre-supplied DBMS_LOB package makes manipulation in
PL/SQL easy.

Oracle also has a BFILE type for large objects stored outside the database.

Working with LOBs
In successive versions, the Oracle database has made it easier to work with LOBs. Along the way
“Temporary LOBs” were added, and some string to LOB conversions are now transparent so data can be
handled directly as strings. Develop and test your LOB application with the Oracle client libraries and
database that will be used for deployment so you can be sure all the expected functionality is available.

When working with large amounts of data, set memory_limit appropriately in php.ini otherwise PHP
may terminate early. When reading or writing files to disk, check if open_basedir allows file access.

These example show BLOBs. Using CLOBs is almost identical to using BLOBs: the descriptor type is
OCI_D_CLOB, the bind type becomes OCI_B_CLOB, and tables must obviously contain a CLOB column.

The examples use a table created in SQL*Plus containing a BLOB column called blobdata:

SQL> create table mybtab (blobid number primary key, blobdata blob);
Note querying BLOB columns in SQL*Plus is not possible unless SQL*Plus 11g is used, where it will
display a hexadecimal version of the data. Tables with CLOB columns can be queried in all versions of
SQL*Plus. The output of BLOB and CLOB data can be controlled in SQL*Plus with the SET LONG
command. The default value of 80 means that only the first 80 characters of data will be displayed by a
query.

Inserting and Updating LOBs
In PHP, LOBs are generally manipulated using a descriptor. PHP code to insert into mybtab is:

Script 68: blobinsert.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

$myblobid = 123;
$myv = 'a very large amount of binary data';

$s = oci_parse($c, 'insert into mybtab (blobid, blobdata)
 values (:myblobid, EMPTY_BLOB())
 returning blobdata into :blobdata');

193

Using Large Objects in OCI8

$lob = oci_new_descriptor($c, OCI_D_LOB);
oci_bind_by_name($s, ':myblobid', $myblobid);
oci_bind_by_name($s, ':blobdata', $lob, -1, OCI_B_BLOB);
oci_execute($s, OCI_DEFAULT); // use OCI_DEFAULT so $lob->save() works

$lob->save($myv);
oci_commit($c);
$lob->close(); // close LOB descriptor to free resources

?>

The RETURNING clause returns the Oracle LOB locator of the new row. By binding as OCI_B_BLOB, the PHP
descriptor in $lob references this locator. The $lob->save() method then stores the data in $myv into the
BLOB column. The OCI_DEFAULT flag is used for oci_execute() so the descriptor remains valid for the
save() method. The commit concludes the insert and makes the data visible to other database users.

If the application uploads LOB data using a web form, it can be inserted directly from the upload
directory with $lob->import($filename). PHP’s maximum allowed size for uploaded files is set in
php.ini using the upload_max_filesize parameter.

To update a LOB, use the same code with this SQL statement:

$s = oci_parse($c, 'update mybtab set
 blobdata = empty_blob()
 returning blobdata into :blobdata');

Fetching LOBs
When fetching a LOB, OCI8 returns the LOB descriptor and the data can be retrieved by using a load() or
read() method:

Script 69: blobfetch.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

$myblobid = 123;

$query = 'select blobdata from mybtab where blobid = :myblobid';
$s = oci_parse ($c, $query);
oci_bind_by_name($s, ':myblobid', $myblobid);
oci_execute($s);
$arr = oci_fetch_array($s, OCI_ASSOC);
if (is_object($arr['BLOBDATA'])) { // protect against a NULL LOB
 $data = $arr['BLOBDATA']->load();
 $arr['BLOBDATA']->free();
 echo $data;
}

?>

It is important to free all returned LOB locators to avoid leaks:

194

Working with LOBs

while (($arr = oci_fetch_array($s, OCI_ASSOC))) {
 echo $arr['BLOBDATA']->load(); // do something with the BLOB
 $arr['BLOBDATA']->free(); // cleanup before next fetch
}

If LOBS are not freed, the ABSTRACT_LOBS column in the V$TEMPORARY_LOBS table will show increasing
values.

Instead of using locators, LOB data can alternatively be returned as a string:

$arr = oci_fetch_array($s, OCI_ASSOC+OCI_RETURN_LOBS);
echo $arr['BLOBDATA'];

If the returned data is larger than expected, PHP may not be able to allocate enough memory. To protect
against this, use a locator with the read() method, which allows the data size to be limited.

Temporary LOBs
Temporary LOBs make some operations easier. Inserting data with a Temporary LOB does not use a
RETURNING INTO clause:

Script 70: tempblobinsert.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

$myblobid = 124;
$myv = 'a very large amount of binary data';

$s = oci_parse($c, 'insert into mybtab (blobid, blobdata)
 values (:myblobid, :blobdata)');
$lob = oci_new_descriptor($c, OCI_D_LOB);
oci_bind_by_name($s, ':myblobid', $myblobid);
oci_bind_by_name($s, ':blobdata', $lob, -1, OCI_B_BLOB);
$lob->writeTemporary($myv, OCI_TEMP_BLOB);
oci_execute($s, OCI_DEFAULT);
oci_commit($c);
$lob->close(); // close lob descriptor to free resources

?>

Temporary LOBs also simplify updating values:

$s = oci_parse($c, 'update mybtab set blobdata = :bd where blobid = :bid');

If you want to either insert a new row or update existing data if the row turns out to exist already, the SQL
statement can be changed to use an anonymous block :

$s = oci_parse($c,
 'begin'
 . ' insert into mybtab (blobdata, blobid) values(:blobdata, :myblobid);'
 . ' exception'
 . ' when dup_val_on_index then'

195

Using Large Objects in OCI8

 . ' update mybtab set blobdata = :blobdata where blobid = :myblobid;'
 . 'end;');

LOBs and PL/SQL procedures
Temporary LOBs can also be used to pass data to PL/SQL IN, and returned from OUT parameters. Given a
PL/SQL procedure that accepts a BLOB and inserts it into mybtab:

Script 71: inproc.sql

create or replace procedure inproc(pid in number, pdata in blob) as
begin
 insert into mybtab (blobid, blobdata) values (pid, pdata);
end;
/
show errors

PHP code to pass a BLOB to INPROC would look like:

Script 72: inproc.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

$myblobid = 125;
$myv = 'a very large amount of binary data';

$s = oci_parse($c, 'begin inproc(:myblobid, :myblobdata); end;');
$lob = oci_new_descriptor($c, OCI_D_LOB);
oci_bind_by_name($s, ':MYBLOBID', $myblobid);
oci_bind_by_name($s, ':MYBLOBDATA', $lob, -1, OCI_B_BLOB);
$lob->writeTemporary($myv, OCI_TEMP_BLOB);
oci_execute($s);
$lob->close();

?>

If the PL/SQL procedure returns a BLOB as an OUT parameter:

Script 73: outproc.sql

create or replace procedure outproc(pid in number, pdata out blob) as
begin
 select blobdata into pdata from mybtab where blobid = pid;
end;
/
show errors

PHP code to fetch and display the BLOB would look like:

196

Working with LOBs

Script 74: outproc.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

$myblobid = 125;

$s = oci_parse($c, "begin outproc(:myblobid, :myblobdata); end;");
$lob = oci_new_descriptor($c, OCI_D_LOB);
oci_bind_by_name($s, ':MYBLOBID', $myblobid);
oci_bind_by_name($s, ':MYBLOBDATA', $lob, -1, OCI_B_BLOB);
oci_execute($s, OCI_DEFAULT);
if (is_object($lob)) { // protect against a NULL LOB
 $data = $lob->load();
 $lob->free();
 echo $data;
}

?>

Other LOB Methods
A number of other methods on the LOB descriptor allow seeking to a specified offset, exporting data
directly to file, erasing data, and copying or comparing a LOB.

This code snippet shows seeking to the 10th position in the result descriptor, and then storing the next
50 bytes in $result:

$arr['BLOBDATA']->seek(10, OCI_SEEK_SET);
$result = $arr['BLOBDATA']->read(50);

The full list of LOB methods and functions is shown in Table 10. Check the PHP manual for usage.

Table 10: LOB methods and functions.

PHP Function or Method Action

OCI-Lob->close Close a LOB descriptor

OCI-Lob->eof Test for LOB end-of-file

OCI-Lob->erase Erases a specified part of the LOB

OCI-Lob->export
OCI-Lob->writeToFile

Write a LOB to a file

OCI-Lob->flush Flushes buffer of the LOB to the server

OCI-Lob->free Frees database resources associated with the LOB

197

Using Large Objects in OCI8

PHP Function or Method Action

OCI-Lob->getBuffering Returns current state of buffering for the LOB

OCI-Lob->import
OCI-Lob->saveFile

Loads data from a file to a LOB

OCI-Lob->load Returns LOB contents

OCI-Lob->read Returns part of the LOB

OCI-Lob->rewind Moves the LOB’s internal pointer back to the beginning

OCI-Lob->save Saves data to the LOB

OCI-Lob->seek Sets the LOB's internal position pointer

OCI-Lob->setBuffering Changes LOB's current state of buffering

OCI-Lob->size Returns size of LOB

OCI-Lob->tell Returns current pointer position

OCI-Lob->truncate Truncates a LOB

OCI-Lob->write Writes data to the LOB

OCI-Lob->writeTemporary Writes a temporary LOB

oci_lob_copy Copies a LOB

oci_lob_is_equal Compare two LOB locators for equality

Working with BFILEs
A BFILE is an Oracle large object (LOB) data type for files stored outside the database. BFILEs are a handy
way for using relatively static, externally created content. They are also useful for loading text or binary
data into Oracle tables.

In SQL and PL/SQL, a BFILE is accessed via a locator, which is simply a pointer to the external file.
There are numerous pre-supplied functions that operate on BFILE locators.

To show how BFILEs work in PHP this section creates a sample application that accesses and displays a
single image. The image will not be loaded into the database but the picture description is loaded so it can
be queried. The BFILE allows the image to be related to the description. Also the application could be
extended in future to use PL/SQL packages to read and manipulate the image.

198

Working with BFILEs

In this example, the image data is not loaded and printed in PHP. Instead, the browser is redirected to
the image URL of the external file. This significantly reduces the amount of data that needs to be handled
by the application.

To allow Apache to serve the image, edit httpd.conf and map a URL to the directory containing the file.
For example if the file is /tmp/cj.jpg add:

 Alias /tmp/ "/tmp/"
 <Directory "/tmp/">
 Options None
 AllowOverride None
 Order allow,deny
 Allow from all
 </Directory>

Using /tmp like this is not recommended for anything except testing!
Restart Apache and use a browser to check that http://localhost/tmp/cj.jpg loads the picture

in /tmp/cj.jpg.
In Oracle, create a DIRECTORY alias for /tmp. This is Oracle’s pointer to the operating system and

forms part of each BFILE. The directory must be on the same machine that the database server runs on.
Start SQL*Plus as:

$ sqlplus system/systempwd@localhost/XE

Then run bfile.sql:

Script 75: bfile.sql
create directory TestDir AS '/tmp';
grant read on directory TestDir to hr;
connect hr/hrpwd@localhost/XE
create table FileTest (
 FileNum number primary key,
 FileDesc varchar2(30),
 Image bfile);

This gives the hr user access to the /tmp directory and creates a table FileTest containing a file number
identifier, a text description of the file, and the BFILE itself. The image data is not loaded into this table; the
BFILE in the table is a pointer to the file on your file system.

PHP code to insert the image name into the FileTest table looks like:

Script 76: bfileinsert.php

<?php

$c = oci_connect("hr", "hrpwd", "localhost/XE");

$fnum = 1;
$fdsc = "Some description to search";
$name = "cj.jpg";

$s = oci_parse($c, "insert into FileTest (FileNum, FileDesc, Image) "
 . "values (:fnum, :fdsc, bfilename('TESTDIR', :name))");

199

Using Large Objects in OCI8

oci_bind_by_name($s, ":fnum", $fnum, -1, SQLT_INT);
oci_bind_by_name($s, ":fdsc", $fdsc, -1, SQLT_CHR);
oci_bind_by_name($s, ":name", $name, -1, SQLT_CHR);
oci_execute($s, OCI_DEFAULT);
oci_commit($c);

?>

The bfilename() constructor inserts into the BFILE-type column using the TESTDIR directory alias
created earlier. Bind variables are used for efficiency and security.

This new BFILE can be queried back in PHP:

Script 77: bfilequery1.php

<?php

$c = oci_connect("hr", "hrpwd", "localhost/XE");

$fnum = 1;

$s = oci_parse($c, "select Image from FileTest where FileNum = :fnum");
oci_bind_by_name($s, ":fnum", $fnum);
oci_execute($s);
$row = oci_fetch_assoc($s);
$bf = $row['IMAGE']; // This is a BFILE descriptor
echo "<pre>"; var_dump($bf); echo "</pre>";

?>

This displays the BFILE descriptor:

object(OCI-Lob)#1 (1) {
 ["descriptor"]=>
 resource(7) of type (oci8 descriptor)
}
For simplicity, the query condition is the file number of the new record. In real life it might use a regular
expression on the FileDesc field like:

select Image from FileTest where regexp_like(FileDesc, 'somepattern')

Now what? In this example the file name is needed so the browser can redirect to a page showing the
image. Unfortunately there is no direct method in PHP to get the filename from the descriptor. However,
an Oracle procedure can be created to do this.

Instead of executing the query in PHP and using PL/SQL to find the filename, a more efficient method
is to do both in PL/SQL. Here an anonymous block is used. Alternatively, a procedure could be used.

The previous query code in bfilequery1.php can be replaced with:

Script 78: showpic.php

<?php

$c = oci_connect("hr", "hrpwd", "localhost/XE");

200

Working with BFILEs

$s = oci_parse($c,
 'declare '
 . 'b_l bfile;'
 . 'da_l varchar2(255);'
 . 'begin '
 . 'select image into b_l from filetest where filenum = :fnum;'
 . 'dbms_lob.filegetname(b_l, da_l, :name);'
 . 'end;');
$fnum = 1;
oci_bind_by_name($s, ":fnum", $fnum);
oci_bind_by_name($s, ":name", $name, 255, SQLT_CHR);
oci_execute($s);

header("Location: http://localhost/tmp/$name");

?>

The filename cj.jpg is returned in $name courtesy of the :name bind variable argument to the
DBMS_LOB.FILEGETNAME() function. The header() function redirects the user to the image. If any text is
printed before the header() is output, the HTTP headers will not be correct and the image will not
display. If you have problems, comment out the header() call and echo $name to check it is valid.

BFILEs are easy to work with in PL/SQL because the pre-supplied DBMS_LOB package has a number of
useful functions. For example DBMS_LOB.LOADFROMFILE() reads BFILE data from the file system into a
PL/SQL BLOB or CLOB. This could be loaded into a BLOB table column, manipulated in PL/SQL, or even
returned to PHP using OCI8’s LOB features. Another example is DBMS_LOB.FILEEXISTS(), which can be
used to check whether the FileTest table contains references to images that do not exist.

BFILEs are very useful for many purposes including loading images into the database, but BLOBs may
be better in some circumstances. Changes to BFILE locators can be rolled back or committed but since the
files themselves are outside the database, BFILE data does not participate in transactions. You can have
dangling references to BFILEs because Oracle does not check the validity of BFILEs until the data is
explicitly read (this allows you to pre-create BFILEs or to change the physical data on disk). BFILE data
files are read-only and cannot be changed within Oracle. Finally, BFILEs need to be backed up manually.
Because of these points, there might be times you should use BLOBs to store images inside the database to
ensure data and application consistency but BFILEs are there if you want them.

201

Using Large Objects in OCI8

202

CHAPTER 13

USING XML WITH ORACLE AND PHP
Both Oracle and PHP 5 have excellent XML capabilities, allowing lots of choice for processing information.
All editions of Oracle contain what is known as “XML DB”, the XML capabilities of the database. When
tables are created, XML can be stored in linear LOB format, or according to the structure of your XML
schema.

This Chapter covers the basics of returning XML data from Oracle to PHP. It also shows how to access
data over HTTP directly from the database.

Fetching Relational Rows as XML
One useful feature of XML DB is that existing relational SQL tables can automatically be retrieved as XML.
The returned values are XML fragments, and not fully formed XML documents.

Script 79: xmlfrag.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

$query =
 'select xmlelement("Employees",
 xmlelement("Name", employees.last_name),
 xmlelement("Id", employees.employee_id)) as result
 from employees
 where employee_id > 200';

$s = oci_parse($c, $query);
oci_execute($s);
while ($row = oci_fetch_array($s, OCI_NUM)) {
 foreach ($row as $item) {
 echo htmlentities($item)."
\n";
 }
}

?>

The output is:

<Employees><Name>Hartstein</Name><Id>201</Id></Employees>
<Employees><Name>Fay</Name><Id>202</Id></Employees>
<Employees><Name>Mavris</Name><Id>203</Id></Employees>
<Employees><Name>Baer</Name><Id>204</Id></Employees>
<Employees><Name>Higgins</Name><Id>205</Id></Employees>
<Employees><Name>Gietz</Name><Id>206</Id></Employees>

203

Using XML with Oracle and PHP

Tip: Watch out for the quoting of XML queries. The XML functions can have embedded double-quotes. This is the exact opposite of
standard SQL queries, which can have embedded single quotes.

There are a number of other XML functions that can be similarly used. See the Oracle Database SQL
Reference.

Fetching Rows as Fully Formed XML
Another way to create XML from relational data is to use the PL/SQL package DBMS_XMLGEN(). This
package returns a fully formed XML document, with the XML header.

Queries that use DBMS_XMLGEN() return a CLOB column, so the initial result needs to be treated in
PHP as a LOB descriptor. There is effectively no length limit for CLOBs. The following example queries the
first name of employees in department 30 and stores the XML marked-up output in $mylob:

Script 80: getxml.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

$query = "select dbms_xmlgen.getxml('
 select first_name
 from employees
 where department_id = 30') xml
 from dual";

$s = oci_parse($c, $query);
oci_execute($s);
$row = oci_fetch_array($s, OCI_NUM);
$mylob = $row[0]->load(); // treat result as a LOB descriptor
$row[0]->free();

echo "<pre>\n";
echo htmlentities($mylob);
echo "</pre>\n";

?>

The value of $mylob is:

<?xml version="1.0"?>
<ROWSET>
 <ROW>
 <FIRST_NAME>Den</FIRST_NAME>
 </ROW>
 <ROW>
 <FIRST_NAME>Alexander</FIRST_NAME>
 </ROW>
 <ROW>

204

Fetching Rows as Fully Formed XML

 <FIRST_NAME>Shelli</FIRST_NAME>
 </ROW>
 <ROW>
 <FIRST_NAME>Sigal</FIRST_NAME>
 </ROW>
 <ROW>
 <FIRST_NAME>Guy</FIRST_NAME>
 </ROW>
 <ROW>
 <FIRST_NAME>Karen</FIRST_NAME>
 </ROW>
</ROWSET>

Using the SimpleXML Extension in PHP
You can use PHP 5’s SimpleXML extension to convert XML to a PHP object. Following on from the previous
example the query results can be converted with:

$xo = simplexml_load_string((binary)$mylob);
var_dump($xo);

Note the cast to binary which ensures consistent encoding. The output is:

object(SimpleXMLElement)#2 (1) {
 ["ROW"]=>
 array(6) {
 [0]=>
 object(SimpleXMLElement)#3 (1) {
 ["FIRST_NAME"]=>
 string(3) "Den"
 }
 [1]=>
 object(SimpleXMLElement)#4 (1) {
 ["FIRST_NAME"]=>
 string(9) "Alexander"
 }
 [2]=>
 object(SimpleXMLElement)#5 (1) {
 ["FIRST_NAME"]=>
 string(6) "Shelli"
 }
 [3]=>
 object(SimpleXMLElement)#6 (1) {
 ["FIRST_NAME"]=>
 string(5) "Sigal"
 }
 [4]=>
 object(SimpleXMLElement)#7 (1) {
 ["FIRST_NAME"]=>
 string(3) "Guy"
 }
 [5]=>
 object(SimpleXMLElement)#8 (1) {

205

Using XML with Oracle and PHP

 ["FIRST_NAME"]=>
 string(5) "Karen"
 }
 }
}

This object can be accessed with array iterators or properties:

foreach ($xo->ROW as $r) {
 echo "Name: " . $r->FIRST_NAME . "
\n";
}

This output from the loop is:

Name: Den
Name: Alexander
Name: Shelli
Name: Sigal
Name: Guy
Name: Karen

There are more examples of using SimpleXML with XML data in PHP's test suite under the
ext/simplexml/tests directory of the PHP source code bundle.

As an alternative to SimpleXML you could use PHP’s older DOM extension. There is an article Using
PHP5 with Oracle XML DB by Yuli Vasiliev in the July/August 2005 Oracle Magazine that discusses this.

Fetching XMLType Columns
Data in XMLType columns could be longer than Oracle's 4000 byte string length limit. When data is fetched
as a string, queries may fail in some cases depending on the data length. For example, here is a basic query
on the RESOURCE_VIEW (which is a way access the Oracle XML DB repository from SQL). The RES column
is an XMLType:

$s = oci_parse($c, 'select res from resource_view');
oci_execute($s);
while ($row = oci_fetch_array($s, OCI_ASSOC)) {
 var_dump($row);
}

This is likely to successfully fetch and display some rows before failing. The failure happens because the
database does a conversion from XMLType to a string before returning results to PHP. When the string is
too long, an error is thrown:

PHP Warning: oci_fetch_array(): ORA-19011: Character string buffer too small

When the rows are short there is no error. During testing you could be tricked into thinking your query
will always return a complete set of rows.

Use the XMLTYPE.GETCLOBVAL() function to force XMLType conversion to return a CLOB, avoiding
the string size limit problem. Standard OCI8 CLOB methods can be used on the returned data:

206

Fetching XMLType Columns

Script 81: xmltype.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

$s = oci_parse($c, 'select xmltype.getclobval(res) from resource_view');
oci_execute($s);
while ($row = oci_fetch_array($s, OCI_NUM)) {
 var_dump($row[0]->load());
 $row[0]->free();
}

?>

Inserting into XMLType Columns
You can insert or update XMLType columns by binding as a CLOB.

This example updates a table without an XMLSchema, and which stores the XMLType column as a
CLOB.

Script 82: xmlinsert.sql

create table xwarehouses (warehouse_id number, warehouse_spec xmltype)
 xmltype warehouse_spec store as clob;

insert into xwarehouses (warehouse_id, warehouse_spec)
values (1,
 xmltype('<?xml version="1.0"?>
 <Warehouse>
 <WarehouseId>1</WarehouseId>
 <WarehouseName>Southlake, Texas</WarehouseName>
 <Building>Owned</Building>
 <Area>25000</Area>
 <Docks>2</Docks>
 <DockType>Rear load</DockType>
 <WaterAccess>true</WaterAccess>
 <RailAccess>N</RailAccess>
 <Parking>Street</Parking>
 <VClearance>10</VClearance>
 </Warehouse>'));

commit;

PHP code to update the number of available warehouse docks is:

Script 83: xmlinsert.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

207

Using XML with Oracle and PHP

$s = oci_parse($c, 'select xmltype.getclobval(warehouse_spec)
 from xwarehouses where warehouse_id = :id');
$id = 1;
$r = oci_bind_by_name($s, ':id', $id);
oci_execute($s);
$row = oci_fetch_array($s, OCI_NUM);

// Manipulate the data using SimpleXML
$sx = simplexml_load_string((binary)$row[0]->load());
$row[0]->free();

$sx->Docks -= 1; // change the data
// Insert changes using a temporary CLOB
$s = oci_parse($c, 'update xwarehouses
 set warehouse_spec = XMLType(:clob)
 where warehouse_id = :id');
oci_bind_by_name($s, ':id', $id);
$lob = oci_new_descriptor($c, OCI_D_LOB);
oci_bind_by_name($s, ':clob', $lob, -1, OCI_B_CLOB);
$lob->writeTemporary($sx->asXml());
oci_execute($s);
$lob->close();

?>

The $sx->asXml() method converts the SimpleXML object to the text representation used to update the
table. A temporary LOB is created to pass the new XML value to the database.

After running the PHP script, querying the record shows the number of docks has been decremented
from 2 to 1:

SQL> set long 1000 pagesize 100

SQL> select warehouse_spec from xwarehouses;

WAREHOUSE_SPEC

<?xml version="1.0"?>
<Warehouse>
 <WarehouseId>1</WarehouseId>
 <WarehouseName>Southlake, Texas</WarehouseName>
 <Building>Owned</Building>
 <Area>25000</Area>
 <Docks>1</Docks>
 <DockType>Rear load</DockType>
 <WaterAccess>true</WaterAccess>
 <RailAccess>N</RailAccess>
 <Parking>Street</Parking>
 <VClearance>10</VClearance>
</Warehouse>

See Using XML in SQL Statements in Oracle Database SQL Reference for more discussion of XMLType.

208

Fetching an XMLType from a PL/SQL Function

Fetching an XMLType from a PL/SQL Function
The GETCLOBVAL() function is also useful when trying to get an XMLType from a stored function. File
xmlfunc.sql creates a simple function returning query data for a given id value.

Script 84: xmlfunc.sql

drop table mytab;
create table mytab (id number, data xmltype);
insert into mytab (id, data) values (1, '<something>mydata</something>');

create or replace function myf(p_id number) return xmltype as
 loc xmltype;
begin
 select data into loc from mytab where id = p_id;
 return loc;
end;
/

To access this function in PHP, first create a wrapper function that maps the XML data to a CLOB:

Script 85: xmlfuncwrapper.sql

create or replace function myf_wrapper(p_id number) return clob as
begin
 return myf(p_id).getclobval();
end;
/

This can be called in PHP by binding a LOB descriptor to the return value of the function. OCI8 LOB
methods like load() can be used on the descriptor:

Script 86: xmlfunc.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

$bd = oci_new_descriptor($c, OCI_D_LOB);
$s = oci_parse($c, "begin :bv := myf_wrapper(1); end;");
oci_bind_by_name($s, ":bv", $bd, -1, OCI_B_CLOB);
oci_execute($s);

echo htmlentities($bd->load()); // Print output
$bd->close();

?>

The output is the expected:

<something>mydata</something>

209

Using XML with Oracle and PHP

XQuery XML Query Language
Oracle’s support for XQuery was introduced in Oracle Database 10g Release 2. Unfortunately, to keep the
footprint of Oracle Database XE small, XQuery is not available in the Oracle Database XE release, but it is
in the other editions of Oracle.

A basic XQuery to return the records in the employees table is:

for $i in ora:view("employees") return $i

This XQuery syntax is embedded in a special SELECT:

select column_value from xmltable('for $i in ora:view("employees") return $i')

The different quoting styles used by SQL and XQuery need careful attention in PHP. It can be coded:

Script 87: xquery.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/orcl');

$xq = 'for $i in ora:view("employees") return $i';
$query = 'select column_value from xmltable(\''.$xq.'\')';

$s = oci_parse($c, $query);
oci_execute($s);
while ($row = oci_fetch_array($s, OCI_NUM)) {
 foreach ($row as $item) {
 echo htmlentities($item)." ";
 }
}

?>

The query could also be in a single PHP HEREDOC with XQuery variables escaped. Note there cannot be
whitespace on the last line before the token END:

$query = <<<END
select column_value from xmltable('for \$i in ora:view("employees") return \$i')
END;

In PHP 5.3, use the NOWDOC syntax so the XQuery variable $i does not need escaping. Note the single
quotes around the word END to differentiate it from a HEREDOC.

$query = <<<'END'
select column_value from xmltable('for $i in ora:view("employees") return $i')
END;

Table rows are automatically wrapped in tags and returned:

<ROW>
 <EMPLOYEE_ID>100</EMPLOYEE_ID>

<FIRST_NAME>Steven</FIRST_NAME>
<LAST_NAME>King</LAST_NAME>

210

XQuery XML Query Language

<EMAIL>SKING</EMAIL>
<PHONE_NUMBER>515.123.4567</PHONE_NUMBER>
<HIRE_DATE>1987-06-17</HIRE_DATE>
<JOB_ID>AD_PRES</JOB_ID>
<SALARY>24000</SALARY>
<DEPARTMENT_ID>90</DEPARTMENT_ID>

</ROW>
…
<ROW>

<EMPLOYEE_ID>206</EMPLOYEE_ID>
<FIRST_NAME>William</FIRST_NAME>
<LAST_NAME>Gietz</LAST_NAME>
<EMAIL>WGIETZ</EMAIL>
<PHONE_NUMBER>515.123.8181</PHONE_NUMBER>
<HIRE_DATE>1994-06-07</HIRE_DATE>
<JOB_ID>AC_ACCOUNT</JOB_ID>
<SALARY>8300</SALARY>
<MANAGER_ID>205</MANAGER_ID>
<DEPARTMENT_ID>110</DEPARTMENT_ID>

</ROW>

You can also use RETURNING CONTENT to return a single document node:

$query = <<<END
select xmlquery('for \$i in ora:view("hr", "locations")/ROW
 return \$i/CITY'
 returning content) from dual
END;

For both XMLTABLE() and XMLQUERY() you might want to use the XMLTYPE.GETCLOBVAL() function to
avoid string size limit issues:

$query = <<<END
select xmltype.getclobval(column_value)
from xmltable('for \$i in ora:view("employees") return \$i')
END;

and

$query = <<<END
select xmltype.getclobval(xmlquery('for \$i in ora:view("hr",
 "locations")/ROW return \$i/CITY'
 returning content)) from dual
END;

The returned column type is a LOB locator and so the fetch uses LOB methods, such as load():

$s = oci_parse($c, $query);
oci_execute($s);
while ($row = oci_fetch_array($s, OCI_NUM)) {
 var_dump($row[0]->load());
 $row[0]->free();
}

211

Using XML with Oracle and PHP

Accessing Data over HTTP with XML DB
XML DB allows you to access data directly via HTTP, FTP or WebDAV. The Oracle Network listener will
handle all these requests. As an example of HTTP access, use the PL/SQL DBMS_XDB package to create a
resource, which here is some simple text:

SQL> declare
 2 res boolean;
 3 begin
 4 begin
 5 -- delete if it already exists
 6 dbms_xdb.deleteResource('/public/test1.txt');
 7 exception
 8 when others then
 9 null;
 10 end;
 11 -- create the file
 12 res := dbms_xdb.createResource('/public/test1.txt',
 13 'the text to store');
 14 commit; -- don’t forget to commit
 15 end;
 16 /

For testing, remove access control on the public resource:

SQL> connect system/systempwd
SQL> alter user anonymous identified by anonymous account unlock;

The file can now be accessed from a browser (or PHP application) using:
http://localhost:8080/public/test1.txt
If you are accessing Oracle Database XE from a remote browser, you may need to enable remote client
connection as described in the chapter Installing Oracle Database 10g Express Edition.

There is extensive Oracle documentation on XML DB on the Oracle Technology network at
http://otn.oracle.com/tech/xml/xmldb.

212

CHAPTER 14

PHP SCALABILITY AND HIGH
AVAILABILITY

This chapter discusses two features supported by PHP OCI8 1.3 that improve scalability and high
availability:

● Oracle Database 11g Database Resident Connection Pooling (DRCP)

● Oracle Database 10g Release 2 or 11g Fast Application Notification (FAN)
The Oracle features are usable separately or together.

Database Resident Connection Pooling (DRCP) is a new feature of Oracle Database 11g that addresses
scalability requirements in environments requiring large numbers of connections with minimal database
resource usage.

Clients that run in high availability configurations such as with Oracle Real Application Clusters (RAC)
or Data Guard Physical Stand-By can take advantage of Fast Application Notification (FAN) events in PHP
to allow applications to respond quickly to database node failures.

Database Resident Connection Pooling
Oracle Database 11g DRCP addresses scalability requirements in environments requiring large numbers of
connections with minimal database resource usage. DRCP pools a set of dedicated database server
processes (known as pooled servers), which can be shared across multiple applications running on the same
or several hosts. A connection broker process manages the pooled servers at the database instance level.

Without DRCP, each PHP process creates and destroys database servers when connections are opened
and closed. This can be expensive and crippling to high scalability. Or alternatively, each process keeps
connections open (“persistent connections”) even when they are not processing any user scripts. This
removes connection creation and destruction costs but incurs unnecessary memory overhead in the
database, as shown in Figure 93.

213

PHP Scalability and High Availability

How DRCP Works
The architecture of DRCP is shown in Figure 94. A connection broker accepts incoming connection requests
from PHP processes and assigns each a free server in the pool. Each PHP process that is executing a PHP
script communicates with this Oracle server until the connection is released. This release can be explicit
with oci_close() or it will happen automatically at the end of the script. When the connection is
released, the server process is returned to the pool and the PHP process keeps a link only to the connection
broker. Active pooled servers contain the Process Global Area (PGA) and the user session data. Idle servers
in the pool retain the user session for reuse by subsequent persistent PHP connections.

When the number of persistent connections is less than the number of pooled servers, a “dedicated
optimization” avoids unnecessarily returning servers to the pool when a PHP connection is closed. Instead,
the dedicated association between the PHP process and the server is kept in anticipation that the PHP
process will quickly become active again. If PHP scripts are executed by numerous web servers, the DRCP
pool can grow to its maximum size (albeit typically a relatively small size), even if the rate of incoming user
requests is low. Each PHP process, either busy or now idle, will be attached to its own pooled server. When
the pool reaches its maximum size, another PHP process that needs a pooled server will take over one of
the idle servers.

214

Figure 93: Without DRCP, idle persistent connections from PHP still consume database resources.

Database Resident Connection Pooling

The pool size and number of connection brokers are configurable. There is always at least one connection
broker per database instance when DRCP is enabled. Also, at any time, around 5% of the current pooled
servers are reserved for authenticating new PHP connections. Authentication is performed when a PHP
process establishes a connection to the connection broker.

DRCP boosts the scalability of the database and the web server tier because connections to the database
are held at minimal cost. Database memory is only used by the pooled servers, and scaling can be explicitly
controlled by DRCP tuning options.

With the introduction of pooled servers used by DRCP, there are now three types of database server
process models that Oracle applications can use: dedicated servers, shared servers and pooled servers.

Table 11: Differences between dedicated servers, shared servers, and pooled servers.

Dedicated Servers Shared Servers Pooled Servers

When the PHP connection is
created, a network connection to
a dedicated server process and
associated session are created.

When the PHP connection is
created, a network connection
to the dispatcher process is
established. A session is created
in the SGA.

When the PHP connection is created,
a network connection to the
connection broker is established.

215

Figure 94: DRCP Architecture.

PHP Scalability and High Availability

Dedicated Servers Shared Servers Pooled Servers

Activity on a connection is
handled by the dedicated server.

Each action on a connection
goes through the dispatcher,
which hands the work to a
shared server.

Activity on a connection wakes the
broker, which hands the network
connection to a pooled server. The
server then handles subsequent
requests directly, just like a dedicated
server.

Idle PHP connections hold a
server process and session
resources.

Idle PHP connections hold
session resources but not a
server process.

Idle PHP connections hold a server
process and session resources.

Closing a PHP connection causes
the session to be freed and the
server process to be terminated.

Closing a PHP connection
causes the session to be freed.

Closing a PHP connection causes the
session to be destroyed and the
pooled server to be released to the
pool. A network connection to the
connection broker is retained.

Memory usage is proportional to
the number of server processes
and sessions. There is one server
and one session for each PHP
connection.

Memory usage is proportional
to the sum of the shared servers
and sessions. There is one
session for each PHP
connection.

Memory usage is proportional to the
number of pooled servers and their
sessions. There is one session for each
pooled server.

Pooled servers in use by PHP are similar in behavior to dedicated servers. After connection, PHP directly
communicates with the pooled server for all database operations.

PHP OCI8 Connections and DRCP
The PHP OCI8 extension has three functions for connecting to a database: oci_connect(),
oci_new_connect(), and oci_pconnect(). The implementation of these functions was reworked in
OCI8 1.3 and all benefit from using DRCP. Table 12 compares dedicated and pooled servers. Shared servers
are not shown but behave similarly to dedicated servers with the exception that only the session and not
the server is destroyed when a connection is closed.

216

Database Resident Connection Pooling

Table 12: Behavior of OCI8 connection functions for Dedicated and Pooled Servers.

OCI8 Function With Dedicated Servers With Pooled Servers

oci_connect() Creates a PHP connection to the
database using a dedicated server.
The connection is cached in the
PHP process for reuse by
subsequent oci_connect() calls
in the same script. At the end of the
script or with oci_close(), the
connection is closed and the server
process and session are destroyed.

Gets a pooled server from the DRCP
pool and creates a brand new
session. Subsequent oci_connect()
calls in the same script use the same
connection. When the script
completes, or oci_close() is called,
the session is destroyed and the
pooled server is available for other
PHP connections to use.

oci_new_connect() Similar to oci_connect() above,
but an independent new PHP
connection and server process is
created every time this function is
called, even within the same script.
All PHP connections and the
database servers are closed when
the script ends or with
oci_close(). Sessions are
destroyed at that time.

Similar to oci_connect() above,
but an independent server in the
pool is used and a new session is
created each time this function is
called in the same script. All sessions
are destroyed at the end of the script
or with oci_close(). The pooled
servers are made available for other
connections to use.

oci_pconnect() Creates a persistent PHP
connection which is cached in the
PHP process. The connection is not
closed at the end of the script, and
the server and session are available
for reuse by any subsequent
oci_pconnect() call passing the
same credentials.

Creates a persistent PHP connection.
Calling oci_close() releases the
connection and returns the server
with its session intact to the pool for
reuse by other PHP processes. If
oci_close() is not called, then this
connection release happens at the
end of the script. Subsequent calls to
oci_pconnect() reuse the existing
network connection to quickly get a
server and session from the pool.

With DRCP, all three connection functions save on the cost of authentication and benefit from the network
connection to the connection broker being maintained, even for connections that are “closed” from PHP’s
point of view. They also benefit from having pre-spawned server processes in the DRCP pool.

The oci_pconnect() function reuses sessions, allowing even greater scalability. The non-persistent
connection functions create and destroy new sessions each time they are used, allowing less sharing at the
cost of reduced performance.

217

PHP Scalability and High Availability

Overall, after a brief warm-up period for the pool, DRCP allows reduced connection times in addition
to the reuse benefits of pooling.

When to use DRCP
DRCP is typically preferred for applications with a large number of connections. Shared servers are useful
for a medium number of connections and dedicated sessions are preferred for small numbers of
connections. The threshold sizes are relative to the amount of memory available on the database host.

DRCP can be useful when any of the following apply:

● A large number of connections need to be supported with minimum memory usage on the database
host.

● PHP applications mostly use the same database credentials for all connections.

● The applications acquire a database connection, work on it for a relatively short duration, and then
release it.

● There are multiple web servers and web server hosts.

● Connections look identical in terms of session settings, for example date format settings and PL/SQL
package state.

DRCP provides the following advantages:

● It enables resource sharing among multiple middle-tier client applications.

● It improves scalability of databases and applications by reducing resource usage.
For persistent PHP connections, normal dedicated servers can be fastest. There is no broker or dispatcher
overhead. The server is always connected and available whenever the PHP process needs it. But as the
number of connections increases, the memory cost of keeping connections open quickly reduces efficiency
of the database system.

For non-persistent PHP connections, DRCP can be fastest because the use of pooled server processes
removes the need for PHP connections to create and destroy processes, and removes the need to re-
authenticate for each connect call.

Consider an application in which the memory required for each session is 400 KB. On a 32 bit operating
system the memory required for each server process could be 4 MB, and DRCP could use 35 KB per
connection (mostly in the connection broker). If the number of pooled servers is configured at 100, the
number of shared servers is configured at 100, and the deployed application creates 5000 PHP connections,
then the memory used by each type of server is estimated in Table 13.

Table 13: Example database host memory use for dedicated, shared and pooled servers.

Dedicated Servers Shared Servers Pooled Servers

Database Server
Memory

5000 * 4 MB 100 * 4 MB 100 * 4 MB

218

Database Resident Connection Pooling

Dedicated Servers Shared Servers Pooled Servers

Session Memory 5000 * 400 KB 5000 * 400 KB

Note: For Shared Servers,
session memory is
allocated from the SGA.

100 * 400 KB

DRCP Connection
Broker Overhead

5000 * 35 KB

Total Memory 21 GB 2.3 GB 610 MB

There is a significant memory saving when using DRCP.
Even if sufficient memory is available to run in dedicated mode, DRCP can still be a viable option if the

PHP application needs database connections for only short periods of time. In this case the memory saved
by using DRCP can be used towards increasing the SGA, thereby improving overall performance.

Pooling is available when connecting over TCP/IP with userid/password based database
authentication. It is not available using bequeath connections.

With Oracle 11.1, the client result cache feature does not work with DRCP.

Sharing the Server Pool
DRCP guarantees that pooled servers and sessions initially used by one database user are only ever
reusable by connections with that same userid. DRCP also further partitions the pool into logical groups or
“connection classes”. A connection class is a user chosen name set in the php.ini configuration file.

Session-specific attributes, like the date format or an explicit role, may be re-usable by any connection
in a particular application. Subsequent persistent connections will reuse the session and inherit those
settings if the username and connection class are the same as the previous connection.

Applications that need different state in the session memory should use different usernames and/or
connection classes.
For example, applications in a suite called RPT may be willing to share pooled servers between themselves
but not with an application suite called HR. The different connection classes and resulting logical
partitioning of the DRCP server pool is shown in Figure 95. Connections with the same username and
connection class from any host will share the same sub-pool of servers.

219

PHP Scalability and High Availability

If there are no free pooled servers matching a request for a userid in the specified connection class, and if
the pool is already at its maximum size, then an idle server in the pool will be used and a new session
created for it. If the server originally belonged to a different connection class, the server will migrate to the
new class. If there are no pooled servers available, the connection request waits for one to become available.
This allows the database to continue without becoming overloaded.

The connection class should be set to the same value for each instance of PHP running the same
application where sharing of pooled connections is desired. If no connection class is specified, each web
server process will have a unique, system generated class name, limiting sharing of connections to each
process.

If DRCP is used but session sharing is not desirable under any condition, use oci_connect() or
oci_new_connect() which recreate the session each time.

Although session data may be reused by subsequent persistent connections, transactions do not span
connections across scripts. Uncommitted data will be rolled back at the end of a PHP script.

Using DRCP in PHP
Using DRCP with PHP applications involves the following steps:
1. Configuring and enabling the pool.

2. Configuring PHP.

3. Deploying the application.

220

Figure 95: The DRCP pool is logically partitioned by username and connection class.

Using DRCP in PHP

PHP applications deployed as Apache modules, FastCGI, CGI and standalone applications can benefit
from DRCP. PHP applications deployed as Apache modules or with FastCGI gain most, since they remain
connected to the connection broker over multiple script executions and can take advantage of other
optimizations, such as statement caching.

Configuring and Enabling the Pool
Every instance of Oracle Database 11g uses a single, default connection pool. User defined pools are
currently not supported. The default pool can be configured and administered by a DBA using the
DBMS_CONNECTION_POOL package:

SQL> execute dbms_connection_pool.configure_pool(
 pool_name => 'SYS_DEFAULT_CONNECTION_POOL',
 minsize => 4,
 maxsize => 40,
 incrsize => 2,
 session_cached_cursors => 20,
 inactivity_timeout => 300,
 max_think_time => 600,
 max_use_session => 500000,
 max_lifetime_session => 86400);

Alternatively the method dbms_connection_pool.alter_param() can be used to set a single
parameter:

SQL> execute dbms_connection_pool.alter_param(
 pool_name => 'SYS_DEFAULT_CONNECTION_POOL',
 param_name => 'MAX_THINK_TIME',
 param_value => '1200');

There is a dbms_connection_pool.restore_defaults() procedure to reset all values.
When DRCP is used with RAC, each database instance has its own connection broker and pool of

servers. Each pool has the identical configuration. For example all pools will have maxsize server
processes. A single dbms_connection_pool command will alter the pool of each instance at the same
time.

The pool needs to be started before connection requests begin. The command below does this by
bringing up the broker, which registers itself with the database listener:

SQL> execute dbms_connection_pool.start_pool();

Once enabled this way, the pool automatically restarts when the instance restarts, unless explicitly stopped
with the dbms_connection_pool.stop_pool() command:

SQL> execute dbms_connection_pool.stop_pool();

The DRCP configuration options are described in Table 11.

221

PHP Scalability and High Availability

Table 14: DRCP Configuration Options.

DRCP Option Description
pool_name The pool to be configured. Currently the only supported name is the

default value SYS_DEFAULT_CONNECTION_POOL.
minsize Minimum number of pooled servers in the pool. The default is 4.
maxsize Maximum number of pooled servers in the pool. If this limit is reached

and all the pooled servers are busy, then connection requests wait until a
server becomes free. The default is 40.

incrsize The number of pooled servers is increased by this value when servers are
unavailable for PHP connections and if the pool is not yet at its
maximum size. The default is 2.

session_cached_cursors Indicates to turn on SESSION_CACHED_CURSORS for all connections in
the pool. This value is typically set to the size of the working set of
frequently used statements. The cache uses cursor resources on the
server. The default is 20. Note: there is also an init.ora parameter for
setting the value for the whole database instance. The pool option allows
a DRCP-based application to override the instance setting.

inactivity_timeout Time to live for an idle server in the pool. If a server remains idle in the
pool for this time, it is killed. This parameter helps to shrink the pool
when it is not used to its maximum capacity. The default is 300 seconds.

max_think_time Maximum time of inactivity the PHP script is allowed after connecting. If
the script does not issue a database call for this amount of time, the
pooled server may be returned to the pool for reuse. The PHP script will
get an ORA error if it later tries to use the connection. The default is 120
seconds.

max_use_session Maximum number of times a server can be taken and released to the
pool before it is flagged for restarting. The default is 500000.

max_lifetime_session Time to live for a pooled server before it is restarted. The default is 86400
seconds.

num_cbrok The number of connection brokers that are created to handle connection
requests. Note: this can only be set with alter_param(). The default is
1.

maxconn_cbrok The maximum number of connections that each connection broker can
handle. Set the per-process file descriptor limit of the operating system
sufficiently high so that it supports the number of connections specified.
Note: this can only be set with alter_param(). The default is 40000.

222

Using DRCP in PHP

Note: The parameters have been described here relative to their use in PHP but it is worth remembering that the DRCP pool is
usable concurrently by other programs.

In general, if pool parameters are changed, the pool should be restarted, otherwise server processes will
continue to use old settings.

The inactivity_timeout setting terminates idle pooled servers, helping optimize database
resources. To avoid pooled servers permanently being held onto by a dead web server process or a selfish
PHP script, the max_think_time parameter can be set. The parameters num_cbrok and maxconn_cbrok
can be used to distribute the persistent connections from the clients across multiple brokers. This may be
needed in cases where the operating system per-process descriptor limit is small.

The max_use_session and max_lifetime_session parameters help protect against any
unforeseen problems affecting server processes. The default values will be suitable for most users.

Users of Oracle Database 11.1.0.6 must apply the database patch for bug 6474441. This is necessary
with OCI8 1.3 to avoid query errors. It also enables LOGON trigger support. This patch is not needed with
11.1.0.7 onwards.

Configuring PHP for DRCP
PHP must be built with the DRCP-enabled OCI8 extension. Download OCI8 1.3 from PECL, extract it and
use it to replace the existing ext/oci8 directory in PHP. Configure, build and install PHP as normal.
Alternatively use the pecl install command to build and install the OCI8 as a shared module. PHP 5.3
and PHP 6, neither of which has been released, contain the new extension by default.

The OCI8 1.3 extension can be used with Oracle client libraries version 9.2 and higher, however DRCP
functionality is only available when PHP is linked with Oracle Database 11g client libraries and connected
to Oracle Database 11g.

Once installed, use PHP’s phpinfo() function to verify that OCI8 1.3 has been loaded.
Before using DRCP, the new php.ini parameter oci8.connection_class should be set to specify the

connection class used by all the requests for pooled servers by the PHP application.

oci8.connection_class = MYPHPAPP

The parameter can be set in php.ini, .htaccess or httpd.conf files. It can also be set and retrieved
programmatically using the PHP functions ini_set() and ini_get().

The OCI8 extension has several legacy php.ini configuration parameters for tuning persistent
connections. These were mainly used to limit idle resource usage. With DRCP, the parameters still have an
effect but it may be easier to use the DRCP pool configuration options.

Table 15: Existing php.ini parameters for persistent connections.

Php.ini Parameter Behavior with DRCP
oci8.persistent_timeout At the timeout of an idle PHP connection, PHP will close the

Oracle connection to the broker. The default is no timeout.

223

PHP Scalability and High Availability

Php.ini Parameter Behavior with DRCP
oci8.max_persistent The maximum number of unique persistent connections that

PHP will maintain to the broker. When the limit is reached a
new persistent connection behaves like oci_connect() and
releases the connection at the end of the script. The default is no
limit. Note: The DRCP maxsize setting will still be enforced by
the database independently from oci8.max_persistent.

oci8.ping_interval The existing recommendation to set it to -1 to disable pinging
and to use appropriate error checking still holds true with
DRCP. Also, the use of FAN (see later) reduces the chance of idle
connections becoming unusable. The default is 60 seconds.

With OCI8 1.3, oci8.ping_interval is also used for non-persistent connections when pooled servers are
used. This helps protect against the possibility of unusable connections being returned to PHP when there
has been a database instance or node failure.

Web servers and the network should benefit from oci8.statement_cache_size being set. For best
performance it should generally be larger than the size of the working set of SQL statements. To tune it,
monitor general web server load and the AWR bytes sent via SQL*Net to client values. The latter statistic
should benefit from not shipping statement meta-data to PHP. Adjust the statement cache size to your
satisfaction.

Once you are happy with the statement cache size, then tune the DRCP pool
session_cached_cursors value. Monitor AWR reports with the goal to make the session cursor cache
hits close to the number of soft parses. Soft parses can be calculated from parse count (total) minus parse
count (hard).

Application Deployment for DRCP
PHP applications must specify the server type POOLED in the connect string. Using Oracle’s Easy Connect
syntax, the PHP call to connect to the sales database on myhost would look like:

$c = oci_pconnect('myuser', 'mypassword', 'myhost/sales:POOLED');
Or if PHP uses an Oracle Network connect name that looks like:

$c = oci_pconnect('myuser', 'mypassword', 'salespool');

Then only the Oracle Network configuration file tnsnames.ora needs to be modified:

salespool=(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=myhost.dom.com)

 (PORT=1521))(CONNECT_DATA=(SERVICE_NAME=sales)
(SERVER=POOLED)))

If these changes are made and the database is not actually configured for DRCP, connections will not
succeed and an error will be returned to PHP.

224

Using DRCP in PHP

Closing Connections
With the new version of the OCI8 extension, closing a persistent connection now releases the server to the
pool allowing optimal pool usage.

PHP scripts that do not currently use oci_close() should be examined to see if they can use it to
return connections to the pool, allowing maximum use of pooled servers:

<?php

// 1. Do some database operations
$conn = oci_pconnect('myuser', 'mypassword', '//myhost/sales:POOLED');

. . .

oci_commit($conn);
oci_close($conn); // Release the connection to the DRCP pool
// 2. Do some non-database work

. . .

// 3. Do some more database operations
$conn = oci_pconnect('myuser', 'mypassword', '//myhost/sales:POOLED');

. . .

oci_commit($conn);
oci_close($conn);

?>

Remember to free statement and other resources that increase the reference count on the PHP connection
and will stop a DB connection closing.

Prior to OCI8 1.3, closing oci_connect() and oci_new_connect() connections had an effect but
closing an oci_pconnect() connection was a no-op. With OCI8 1.3, oci_close() on a persistent
connection rolls back any uncommitted transaction. Also the extension will do a roll back when all PHP
variables referencing a persistent connection go out of scope, for example if the connection was opened in a
function and the function has now finished. For DRCP, in addition to the rollback, the connection is also
released; a subsequent oci_pconnect() may get a different connection. For DRCP, the benefit is that
scripts taking advantage of persistent connections can explicitly return a server to the pool when non-
database processing occurs, allowing other concurrent scripts to make use of the pooled server.

With pooled servers, the recommendation is to release the connection when the script does a significant
amount of processing that is not database related. Explicitly control commits and rollbacks so there is no
unexpectedly open transaction when the close or end-of-scope occurs. Scripts coded like this can use
oci_close() to take advantage of DRCP but still be portable to older versions of the OCI8 extension.

If behavior where oci_close() is a no-op for all connection types is preferred, set the existing php.ini
parameter oci8.old_oci_close_semantics to On.

225

PHP Scalability and High Availability

LOGON and LOGOFF Triggers with DRCP
LOGON triggers are efficient for setting common session attributes such as date formats. LOGON triggers are
also useful for setting session attributes needed by each PHP connection. For example a trigger could be
used to execute an ALTER SESSION statement to set a date format. The LOGON trigger will execute when
oci_pconnect() creates the session, and the session will be reused by subsequent persistent connections.

The suggested practice is to use LOGON triggers only for setting session attributes and not for executing
per PHP-connection logic such as custom logon auditing. This recommendation is also true for persistent
connections with dedicated or shared servers, and is the existing recommendation for earlier releases of the
OCI8 extension.

Database actions that must be performed exactly once per OCI8 connection call should be explicitly
executed in the PHP script.

It is not possible to depend on LOGON triggers for tracking PHP OCI8 connect calls. The caching,
pooling, timing out and recreation of sessions and connections with or without DRCP or the new extension
can distort any record. With pooled servers, LOGON triggers can fire at authentication and when the session
is created, in effect firing twice for the initial connection.

LOGOFF triggers do not fire for pooled servers. For non-pooled servers there is no change in OCI 1.3:
LOGOFF triggers fire when connections are closed. For oci_connect() and oci_new_connect()
connections this is with oci_close() or at the end of the script. For oci_pconnect() connections, it is
when the web server process terminates or restarts.

Changing Passwords with DRCP Connections
In general, PHP applications that change passwords should avoid using persistent connections because
connections stored persistently in PHP may allow application connections to succeed using the old
password. With DRCP, there is a further limitation - connections cannot be used to change passwords
programmatically. PHP scripts that use oci_password_change() should continue to use dedicated or
shared servers.

Monitoring DRCP
Data dictionary views are available to monitor the performance of DRCP. Database administrators can
check statistics such as the number of busy and free servers, and the number of hits and misses in the pool
against the total number of requests from clients. The views are:

● V$PROCESS
● V$SESSION
● DBA_CPOOL_INFO
● V$CPOOL_STATS
● V$CPOOL_CC_STATS
The DRCP statistics are reset each time the pool is started.

For RAC, there are GV$CPOOL_STATS and GV$CPOOL_CC_STATS views corresponding to the instance-
level views. These record DRCP statistics across clustered instances. If a database instance in a cluster is
shut down, the statistics for that instance are purged from the GV$ views.

226

Monitoring DRCP

V$PROCESS and V$SESSION Views
The number of configured brokers per instance can be found from the V$PROCESS view. For example, on
Linux this query shows one broker has been enabled:

SQL> select program
 from v$process
 where program like 'oracle%(N%)';

PROGRAM
--
oracle@localhost (N001)

The V$SESSION view will show information about the currently active DRCP sessions. It can also be joined
with V$PROCESS via V$SESSION.PADDR = V$PROCESS.ADDR to correlate the views.

DBA_CPOOL_INFO View
DBA_CPOOL_INFO displays configuration information about all DRCP pools in the database. The columns
are equivalent to the dbms_connection_pool.configure_pool() settings described in Table 11, with
the addition of a STATUS column. The status is ACTIVE if the pool has been started and INACTIVE
otherwise. Note the pool name column is called CONNECTION_POOL. For example, to check whether the
pool has been started and what the maximum number of pooled servers is set to:

SQL> select connection_pool, status, maxsize
 from dba_cpool_info;

CONNECTION_POOL STATUS MAXSIZE
---------------------------- ---------------- ----------
SYS_DEFAULT_CONNECTION_POOL ACTIVE 40

V$CPOOL_STATS View
V$CPOOL_STATS displays information about the DRCP statistics for an instance.

Table 16: V$CPOOL_STATS View.

Column Description
POOL_NAME Name of the Database Resident Connection Pool.
NUM_OPEN_SERVERS Total number of busy and free servers in the pool (including the

authentication servers).
NUM_BUSY_SERVERS Total number of busy servers in the pool (not including the

authentication servers).
NUM_AUTH_SERVERS Number of authentication servers in the pool.
NUM_REQUESTS Number of client requests.

227

PHP Scalability and High Availability

Column Description
NUM_HITS Total number of times client requests found matching pooled

servers and sessions in the pool.
NUM_MISSES Total number of times client requests could not find a matching

pooled server and session in the pool.
NUM_WAITS Total number of client requests that had to wait due to non-

availability of free pooled servers.
WAIT_TIME Reserved for future use.
CLIENT_REQ_TIMEOUTS Reserved for future use.
NUM_AUTHENTICATIONS Total number of authentications of clients done by the pool.
NUM_PURGED Total number of sessions purged by the pool.
HISTORIC_MAX Maximum size that the pool has ever reached.

The V$CPOOL_STATS view can be used to assess how efficient the pool settings are. This example query
shows an application using the pool effectively. The low number of misses indicates that servers and
sessions were reused. The wait count shows just over 1% of requests had to wait for a pooled server to
become available. Increasing the number of pooled servers would reduce the number of waits:

SQL> select num_requests,num_hits,num_misses,num_waits
 from v$cpool_stats
 where pool_name = 'SYS_DEFAULT_CONNECTION_POOL';

NUM_REQUESTS NUM_HITS NUM_MISSES NUM_WAITS
------------ ---------- ---------- ----------
 100031 99993 38 1054

If oci8.connection_class is set (allowing pooled servers and sessions to be reused) then NUM_MISSES is
low. If the pool maxsize is too small for the connection load then NUM_WAITS is high:

NUM_REQUESTS NUM_HITS NUM_MISSES NUM_WAITS
------------ ---------- ---------- ----------
 50352 50348 4 50149

If the connection class is left unset, the sharing of pooled servers is restricted to within each web server
process. Even if the pool size is large, session sharing is limited causing poor utilization of pooled servers
and contention for them:

NUM_REQUESTS NUM_HITS NUM_MISSES NUM_WAITS
------------ ---------- ---------- ----------
 64152 17941 46211 15118

228

Monitoring DRCP

V$CPOOL_CC_STATS View
V$CPOOL_CC_STATS displays information about the connection class level statistics for the pool per
instance. The columns are similar to those of V$CPOOL_STATS described in Table 6, with a CCLASS_NAME
column giving the name of the connection sub-pool the results are for:

SQL> select cclass_name,num_requests,num_hits,num_misses
 from v$cpool_cc_stats;

CCLASS_NAME NUM_REQUESTS NUM_HITS NUM_MISSES
-------------------- ------------ ---------- ----------
HR.MYPHPAPP 100031 99993 38
SCOTT.SHARED 10 0 10
HR.OCI:SP:SdjxIx1Ufz 1 0 1

For PHP, the CCLASS_NAME value is composed of the value of the username and of the
oci8.connection_class value used by the connecting PHP processes. This view shows an application
known as MYPHPAPP using the pool effectively.

The last line of the example output shows a system generated class name for an application that did not
explicitly set oci8.connection_class. Pooling is not effectively used in this case. Such an entry could be
an indication that a php.ini file is mis-configured.

For programs like SQL*Plus that were not built using Oracle’s Session Pooling APIs, the class name will
be SHARED. The example shows that ten such connections were made as the user SCOTT. Although these
programs share the same connection class, new sessions are created for each connection, keeping each
cleanly isolated from any unwanted session changes.

High Availability with FAN and RAC
Clients that run in high availability configurations such as with Oracle RAC or Data Guard Physical Stand-
By can take advantage of Fast Application Notification (FAN) events to allow applications to respond
quickly to database node failures. FAN support in PHP may be used with or without DRCP – the two
features are independent.

Without FAN, when a database instance or machine node fails unexpectedly, PHP applications may be
blocked waiting for a database response until a TCP timeout expires. Errors are therefore delayed,
sometimes up to several minutes, by which time the application may have exceeded PHP’s maximum
allowed execution time.

By leveraging FAN events, PHP applications are quickly notified of failures that affect their established
database connections. Connections to a failed database instance are pro-actively terminated without
waiting for a potentially lengthy TCP timeout. This allows PHP scripts to recover quickly from a node or
network failure. The application can reconnect and continue processing without the user being aware of a
problem.

Also, all inactive network connections cached in PHP to the connection broker in case of DRCP, and
persistent connections to the server processes or dispatcher in case of dedicated or shared server
connections on the failed instances, are automatically cleaned up.

A subsequent PHP connection call will create a new connection to a surviving RAC node, activated
stand-by database, or even the restarted single-instance database.

229

PHP Scalability and High Availability

Configuring FAN Events in the Database
To get the benefit of high availability, the database service to which the applications connect must be
enabled to post FAN events:

SQL> execute dbms_service.modify_service(
 service_name => 'SALES',
 aq_ha_notifications => TRUE);

Configuring PHP for FAN
With the OCI8 1.3 extension, a php.ini configuration parameter oci8.events allows PHP to be notified of
FAN events:

oci8.events = On

FAN support is only available when PHP is linked with Oracle Database 10g Release 2 or 11g libraries and
connecting to Oracle Database 10g Release 2 or 11g.

Application Deployment for FAN
The error codes returned to PHP will generally be the same as without FAN enabled, so application error
handling can remain unchanged.

Alternatively, applications can be enhanced to reconnect and retry actions, taking advantage of the
higher level of service given by FAN.

As an example, the code below does some work (perhaps a series of update statements). If there is a
connection failure, it reconnects, checks the transaction state and retries the work. The OCI8 1.3 extension
will detect the connection failure and be able reconnect on request, but the user script must also determine
that work failed, why it failed, and be able to continue that work. The example code detects connections
errors so it can identify it needs to continue or retry work. It is generally important not to redo operations
that already committed updated data.

Typical errors returned after an instance failure are ORA-12153: TNS:not connected or
ORA-03113: end-of-file on communication channel. Other connection related errors are shown in
the example, but errors including standard database errors may be returned, depending on timing.

function isConnectionError($err)
{
 switch($err) {
 case 378: /* buffer pool param incorrect */
 case 602: /* core dump */
 case 603: /* fatal error */
 case 609: /* attach failed */
 case 1012: /* not logged in */
 case 1033: /* init or shutdown in progress */
 case 1043: /* Oracle not available */
 case 1089: /* immediate shutdown in progress */
 case 1090: /* shutdown in progress */
 case 1092: /* instance terminated */
 case 3113: /* disconnect */

230

High Availability with FAN and RAC

 case 3114: /* not connected */
 case 3122: /* closing window */
 case 3135: /* lost contact */
 case 12153: /* TNS: not connected */
 case 27146: /* fatal or instance terminated */
 case 28511: /* Lost RPC */
 return true;
 }
 return false;
}

$conn = doConnect();
$err = doSomeWork($conn);
if (isConnectionError($err)) {
 // reconnect, find what was committed, and retry
 $conn = doConnect();
 $err = checkApplicationStateAndContinueWork($conn);
}
if ($err) {
 // end the application
 handleError($err);
}

RAC Connection Load Balancing with PHP
PHP OCI8 1.3 will automatically balance new connections across RAC instances with Oracle's Connection
Load Balancing (CLB) to use resources efficiently.

It is recommended to use FAN and CLB together.
To enable CLB, the database service must be modified using dbms_service to send load events. Set the
clb_goal parameter to CLB_GOAL_SHORT or CLB_GOAL_LONG. For example:

SQL> execute dbms_service.modify_service(
 service_name => 'SALES',
 clb_goal => dbms_service.clb_goal_long);

Table 17: CLB clb_goal parameter values.

Parameter Value Parameter Description
CLB_GOAL_SHORT Use for connection load balancing method for applications that have

short-lived connections. This uses load balancing advisories if the
goal parameter is not GOAL_NONE, otherwise a CPU utilization is
used.

CLB_GOAL_LONG Use for applications that have long-lived connections. This uses a
simple metric to distribute load. This is the default.

No PHP script changes are needed. The connection balancing is handled transparently by the Oracle Net
listener.

231

PHP Scalability and High Availability

232

CHAPTER 15

GLOBALIZATION

This Chapter discusses global application development in a PHP and Oracle Database environment. It
addresses the basic tasks associated with developing and deploying global Internet applications, including
developing locale awareness, constructing HTML content in the user-preferred language, and presenting
data following the cultural conventions of the locale of the user.

Building a global Internet application that supports different locales requires good development
practices. A locale refers to a national language and the region in which the language is spoken. The
application itself must be aware of the locale preference of the user and be able to present content
following the cultural conventions expected by the user. It is important to present data with appropriate
locale characteristics, such as the correct date and number formats. Oracle Database is fully
internationalized to provide a global platform for developing and deploying global applications.

Establishing the Environment Between Oracle and PHP
Correctly setting up the connectivity between the PHP engine and the Oracle database is the first step in
building a global application. It guarantees data integrity across all tiers. Most Internet based standards
support Unicode as a character encoding. This chapter focuses on using Unicode as the character set for
data exchange.

OCI8 is an Oracle OCI application, and rules that apply to OCI also apply to PHP. Oracle locale
behavior (including the client character set used in OCI applications) is defined by Oracle’s national
language support NLS_LANG environment variable. This environment variable has the form:

<language>_<territory>.<character set>

For example, for a German user in Germany running an application in Unicode, NLS_LANG should be set to

GERMAN_GERMANY.AL32UTF8

The language and territory settings control Oracle behaviors such as the Oracle date format, error message
language, and the rules used for sort order. The character set AL32UTF8 is the Oracle name for UTF-8.

The character set can also be passed as a parameter to the OCI8 connection functions. Doing this is
recommended for performance reasons, even if NLS_LANG is also set.

If the character set used by PHP does not match the character set used by the database, Oracle will try
to convert when data is inserted and queried. This may reduce performance. Also an accurate mapping is
not always be possible, resulting in data being converted to question marks.

There are other environment variables that can be used to set particular aspects of globalization. For
information on NLS_LANG and other Oracle language environment variables, see the Oracle
documentation.

The section Configuring Apache HTTP Server on Linux in the Apache chapter discusses how environment
variables can be set for Apache.

When Zend Core for Oracle is installed on Apache, you can set NLS_LANG in /etc/profile:

233

Globalization

export NLS_LANG GERMAN_GERMANY.AL32UTF8

If the globalization settings are invalid, PHP may fail to connect to Oracle and give an error like

ORA-12705: Cannot access NLS data files or invalid environment specified

Some globalization values can be changed per connection.

$s = oci_parse($c,"alter session set nls_territory=germany nls_language=german");
oci_execute($s);

After executing this, Oracle error messages will be in German and the default date format will have
changed.

Caution: When changing the globalization settings for a persistent connection, the next time the connection is used, the altered
values will still be in effect.

If PHP is installed on Oracle HTTP Server, you must set NLS_LANG as an environment variable in
$ORACLE_HOME/opmn/conf/opmn.xml:

<ias-component id="HTTP_Server">
 <process-type id="HTTP_Server" module-id="OHS">
 <environment>
 <variable id="PERL5LIB" value="D:\oracle\1012J2EE\Apache\Apache\
mod_perl\site\5.6.1\lib"/>
 <variable id="PHPRC" value="D:\oracle\1012J2EE\Apache\Apache\conf"/>
 <variable id="NLS_LANG" value="german_germany.al32utf8"/>
 </environment>
 <module-data>
 <category id="start-parameters">
 <data id="start-mode" value="ssl-disabled"/>
 </category>
 </module-data>
 <process-set id="HTTP_Server" numprocs="1"/>
 </process-type>
 </ias-component>

You must restart the Web listener to implement the change.
To find the language and territory currently used by PHP, and the character set with which the

database stores data, execute:

$s = oci_parse($c,
 "select sys_context('userenv', 'language') as nls_lang from dual");
oci_execute($s);
$res = oci_fetch_array($s, OCI_ASSOC);
echo $res['NLS_LANG'] . "\n";

Output is of the form:

AMERICAN_AMERICA.WE8MSWIN1252

234

Manipulating Strings

Manipulating Strings
PHP was designed to work with the ISO-8859-1 character set. To handle other character sets, there are
several extensions that can be used. The common extensions are mbstring and iconv. Recently a new intl
package has been added to PECL. It implements some International Components for Unicode (ICU)
functionality and is likely to become popular.

To enable the mbstring extension in PHP using the Zend Core for Oracle Administration Console:
1. Open the Zend Core for Oracle Administration Console by entering the URL in a web browser:

http://machine_name/ZendCore
2. Login and navigate to Configuration > Extensions > Zend Core Extensions.

3. Enable the mbstring extension.

4. Save the configuration.

5. Restart Apache.
When you have enabled the mbstring extension and restarted the web server, several configuration options
become available in the Zend Core for Oracle Administration Console. Refresh the browser on the
Extension Configuration page to see these mbstring configuration options.

You can change the behavior of the standard PHP string functions by setting
mbstring.func_overload to one of the Overload settings. For more information, see the PHP mbstring
reference manual at http://www.php.net/mbstring.

Your application code should use functions such as mb_strlen() to calculate the number of characters
in strings. This may return different values than strlen(), which returns the number of bytes in a string.

Determining the Locale of the User
In a global environment, your application should accommodate users with different locale preferences.
Once it has determined the preferred locale of the user, the application should construct HTML content in
the language of the locale and follow the cultural conventions implied by the locale.

A common method to determine the locale of a user is from the default ISO locale setting of the
browser. Usually a browser sends its locale preference setting to the HTTP server with the Accept
Language HTTP header. If the Accept Language header is NULL, then there is no locale preference
information available, and the application should fall back to a predefined default locale.

The following PHP code retrieves the ISO locale from the Accept-Language HTTP header through the
$_SERVER Server variable.

$s = $_SERVER["HTTP_ACCEPT_LANGUAGE"]

Developing Locale Awareness
Once the locale preference of the user has been determined, the application can call locale-sensitive
functions, such as date, time, and monetary formatting to format the HTML pages according to the cultural
conventions of the locale.

235

Globalization

When you write global applications implemented in different programming environments, you should
enable the synchronization of user locale settings between the different environments. For example, PHP
applications that call PL/SQL procedures should map the ISO locales to the corresponding NLS_LANGUAGE
and NLS_TERRITORY values and change the parameter values to match the locale of the user before calling
the PL/SQL procedures. The PL/SQL UTL_I18N package contains mapping functions that can map between
ISO and Oracle locales.

Table 18 shows how some commonly used locales are defined in ISO and Oracle environments.

Table 18: Locale representations in ISO, SQL and PL/SQL programming environments.

Locale Locale ID NLS_LANGUAGE NLS_TERRITORY

Chinese (P.R.C.) zh-CN SIMPLIFIED CHINESE CHINA
Chinese (Taiwan) zh-TW TRADITIONAL CHINESE TAIWAN
English (U.S.A) en-US AMERICAN AMERICA
English (United Kingdom) en-GB ENGLISH UNITED KINGDOM
French (Canada) fr-CA CANADIAN FRENCH CANADA
French (France) fr-FR FRENCH FRANCE
German de GERMAN GERMANY
Italian it ITALIAN ITALY
Japanese ja JAPANESE JAPAN
Korean ko KOREAN KOREA
Portuguese (Brazil) pt-BR BRAZILIAN PORTUGUESE BRAZIL
Portuguese pt PORTUGUESE PORTUGAL
Spanish es SPANISH SPAIN

Encoding HTML Pages
The encoding of an HTML page is important information for a browser and an Internet application. You
can think of the page encoding as the character set used for the locale that an Internet application is
serving. The browser must know about the page encoding so that it can use the correct fonts and character
set mapping tables to display the HTML pages. Internet applications must know about the HTML page
encoding so they can process input data from an HTML form.

Instead of using different native encodings for the different locales, Oracle recommends that you use
UTF-8 (Unicode encoding) for all page encodings. This encoding not only simplifies the coding for global
applications, but it also enables multilingual content on a single page.

Specifying the Page Encoding for HTML Pages
You can specify the encoding of an HTML page either in the HTTP header, or in HTML page header.

236

Encoding HTML Pages

Specifying the Encoding in the HTTP Header
To specify HTML page encoding in the HTTP header, include the Content-Type HTTP header in the
HTTP specification. It specifies the content type and character set. The Content-Type HTTP header has
the following form:

Content-Type: text/html; charset=utf-8

The charset parameter specifies the encoding for the HTML page. The possible values for the charset
parameter are the IANA names for the character encodings that the browser supports.

Specifying the Encoding in the HTML Page Header
Use this method primarily for static HTML pages. To specify HTML page encoding in the HTML page
header, specify the character encoding in the HTML header as follows:

<meta http-equiv="Content-Type" content="text/html;charset=utf-8">

The charset parameter specifies the encoding for the HTML page. As with the Content-Type HTTP
Header, the possible values for the charset parameter are the IANA (Internet Assigned Numbers
Authority) names for the character encodings that the browser supports.

Specifying the Page Encoding in PHP
You can specify the encoding of an HTML page in the Content-Type HTTP header in PHP by setting the
default_charset configuration variable in php.ini:

default_charset = UTF-8

To enable character set encoding of HTML pages using the Zend Core for Oracle Administration Console.
1. Open the Zend Core for Oracle Administration Console by entering the URL in a web browser:

http://<machine_name>/ZendCore
2. Login and navigate to Configuration > PHP > Data Handling.

3. Enter UTF-8 for the default_charset parameter.

4. Save the configuration.

5. Restart Apache.
This setting does not imply any conversion of outgoing pages. Your application must ensure that the
server-generated pages are encoded in UTF-8.

Organizing the Content of HTML Pages for Translation
Making the user interface available in the local language of the user is a fundamental task in globalizing an
application. Translatable sources for the content of an HTML page belong to the following categories:

237

Globalization

● Text strings included in the application code

● Static HTML files, images files, and template files such as CSS

● Dynamic data stored in the database

Strings in PHP
You should externalize translatable strings within your PHP application logic, so that the text is readily
available for translation. These text messages can be stored in flat files or database tables depending on the
type and the volume of the data being translated. PHP's gettext extension is often used for this purpose.

Static Files
Static files such as HTML and text stored as images are readily translatable. When these files are translated,
they should be translated into the corresponding language with UTF-8 as the file encoding. To differentiate
the languages of the translated files, stage the static files of different languages in different directories or
with different file names.

Data from the Database
Dynamic information such as product names and product descriptions is typically stored in the database.
To differentiate various translations, the database schema holding this information should include a
column to indicate the language. To select the desired language, you must include a WHERE clause in your
query.

Presenting Data Using Conventions Expected by the User
Data in the application must be presented in a way that conforms to the expectation of the user. Otherwise,
the meaning of the data can be misinterpreted. For example, the date ‘12/11/05’ implies ‘11th December
2005’ in the United States, whereas in the United Kingdom it means ‘12th November 2005’. Similar
confusion exists for number and monetary formats of the users. For example, the symbol ‘.’ is a decimal
separator in the United States; in Germany this symbol is a thousand separator. This can be a particular
problem in PHP when database numbers are fetched as PHP strings.

Different languages have their own sorting rules. Some languages are collated according to the letter
sequence in the alphabet, some according to the number of stroke counts in the letter, and some languages
are ordered by the pronunciation of the words. Presenting data not sorted in the linguistic sequence that
your users are accustomed to can make searching for information difficult and time consuming.

Depending on the application logic and the volume of data retrieved from the database, it may be more
appropriate to format the data at the database level rather than at the application level. Oracle offers many
features that help to refine the presentation of data when the locale preference of the user is known. The
following sections provide examples of locale-sensitive operations in SQL.

238

Presenting Data Using Conventions Expected by the User

Oracle Number Formats
OCI8 fetches numbers as PHP strings. The conversion is done by Oracle and can be customized. It is
possible to lose decimal places or get errors in PHP when it internally converts strings not using the US
formatting conventions.

The following examples illustrate the differences in the decimal character and group separator between
the United States and Germany when numbers are converted to strings by Oracle.

SQL> alter session set nls_territory = america;

Session altered.

SQL> select employee_id EmpID,
 2 substr(first_name,1,1)||'.'||last_name "EmpName",
 3 to_char(salary, '99G999D99') "Salary"
 4 from employees
 5 where employee_id < 105;

 EMPID EmpName Salary
---------- --------------------------- ----------
 100 S.King 24,000.00
 101 N.Kochhar 17,000.00
 102 L.De Haan 17,000.00
 103 A.Hunold 9,000.00
 104 B.Ernst 6,000.00

SQL> alter session set nls_territory = germany;

Session altered.

SQL> select employee_id EmpID,
 2 substr(first_name,1,1)||'.'||last_name "EmpName",
 3 to_char(salary, '99G999D99') "Salary"
 4 from employees
 5 where employee_id < 105;

 EMPID EmpName Salary
---------- --------------------------- ----------
 100 S.King 24.000,00
 101 N.Kochhar 17.000,00
 102 L.De Haan 17.000,00
 103 A.Hunold 9.000,00
 104 B.Ernst 6.000,00

The format '99G999D99' contains the 'G' thousands separator and 'D' decimal separator at the appropriate
places in the desired output number. In the two territories, the actual character displayed is different.

The equivalent PHP example is:

Script 88: numformat.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

239

Globalization

$s = oci_parse($c, "alter session set nls_territory = germany");
oci_execute($s);

$s = oci_parse($c, "select 123.567 as num from dual");
oci_execute($s);
$r = oci_fetch_array($s, OCI_ASSOC);

$n1 = $r['NUM']; // value as fetched
var_dump($n1);

$n2 = (float)$n1; // now cast it to a number
var_dump($n2);

?>

The output is:

string(7) "123,567"
float(123)

If NLS_TERRITORY had instead been set to america the output would have been correct:

string(7) "123.567"
float(123.567)

The problem can also occur depending on the territory component of NLS_LANG, or the value of
NLS_NUMERIC_CHARACTERS. The latter variable can be used to override the number format while other
territory settings remain in effect. It can be set as an environment variable:

export NLS_NUMERIC_CHARACTERS=”.,”
apachectl start

or with a logon trigger, or by using an ALTER SESSION command in PHP:

$s = oci_parse($c, "alter session set nls_numeric_characters = '.,'");
oci_execute($s);

Changing it in PHP is likely to be the slowest of the methods.
The tip Do Not Set the Date Format Unnecessarily in the chapter Connecting to Oracle Using OCI8 shows

how an ALTER SESSION command can be used in a database logon trigger.

Oracle Date Formats
The basic date format used by Oracle depends on your Globalization settings, such as the value in
NLS_LANG.

The three different date presentation formats in Oracle are standard, short, and long dates. The
following examples illustrate the differences between the short date and long date formats for both the
United States and Germany.

SQL> alter session set nls_territory = america nls_language = american;

SQL> select employee_id EmpID,

240

Presenting Data Using Conventions Expected by the User

 2 substr(first_name,1,1)||'.'||last_name "EmpName",
 3 to_char(hire_date,'DS') "Hiredate",
 4 to_char(hire_date,'DL') "Long HireDate"
 5 from employees
 6* where employee_id <105;

 EMPID EmpName Hiredate Long HireDate
---------- ---------------- ---------- -----------------------------
 100 S.King 06/17/1987 Wednesday, June 17, 1987
 101 N.Kochhar 09/21/1989 Thursday, September 21, 1989
 102 L.De Haan 01/13/1993 Wednesday, January 13, 1993
 103 A.Hunold 01/03/1990 Wednesday, January 3, 1990
 104 B.Ernst 05/21/1991 Tuesday, May 21, 1991

SQL> alter session set nls_territory=germany nls_language=german;

SQL> select employee_id EmpID,
 2 substr(first_name,1,1)||'.'||last_name "EmpName",
 3 to_char(hire_date,'DS') "Hiredate",
 4 to_char(hire_date,'DL') "Long HireDate"
 5 from employees
 6* where employee_id <105;

 EMPID EmpName Hiredate Long HireDate
---------- ----------------- -------- ------------------------------
 100 S.King 17.06.87 Mittwoch, 17. Juni 1987
 101 N.Kochhar 21.09.89 Donnerstag, 21. September 1989
 102 L.De Haan 13.01.93 Mittwoch, 13. Januar 1993
 103 A.Hunold 03.01.90 Mittwoch, 3. Januar 1990
 104 B.Ernst 21.05.91 Dienstag, 21. Mai 1991

In addition to these three format styles you can customize the format using many other date format
specifiers. Search the Oracle documentation for “datetime format elements” to see a list.

If the date format derived from the NLS_LANG setting is not the one you want for your PHP session,
you can override the format by setting the environment variable NLS_DATE_FORMAT in the shell that starts
your web server or PHP executable:

export NLS_DATE_FORMAT='YYYY-MM-DD HH24:MI:SS'
apachectl start

Alternatively you can set it in a logon trigger, or change it after connecting in PHP:

$s = oci_parse($c, "alter session set nls_date_format='YYYY-MM-DD HH24:MI:SS'");
oci_execute($s);

Subsequent queries will return the new format:

$s = oci_parse($c, "select sysdate from dual");
$r = oci_execute($s);
$row = oci_fetch_array($s, OCI_ASSOC);
echo "Date is " . $row["SYSDATE"] . "\n";

The output is:

241

Globalization

Date is 2007-08-01 11:43:30

One advantage of setting the date format globally instead of using to_char() is it allows PHP and Oracle
to share a common format for inserts and queries:

Script 89: dateformat.php

<?php

$c = oci_connect('hr', 'hrpwd', 'localhost/XE');

// Set default Oracle date format
$s = oci_parse($c, "alter session set nls_date_format='YYYY-MM-DD HH24:MI:SS'");
oci_execute($s);

// This PHP Date format matches the new Oracle format
$d = date('Y-m-d H:i:s');
echo "Inserting $d\n";
$s = oci_parse($c, "insert into employees
 (employee_id, last_name, email, hire_date, job_id)
 values (1, 'Jones', 'cj@example.com', :dt, 'ST_CLERK')");
oci_bind_by_name($s, ":dt", $d);
oci_execute($s);

$s = oci_parse($c, "select hire_date from employees where employee_id = 1");
oci_execute($s);
oci_fetch_all($s, $res);
var_dump($res);

?>

The output is:

Inserting 2008-10-23 04:01:17
array(1) {
 ["HIRE_DATE"]=>
 array(1) {
 [0]=>
 string(19) "2008-10-23 04:01:17"
 }
}

Oracle Linguistic Sorts
Spain traditionally treats ch, ll as well as ñ as unique letters, ordered after c, l and n, respectively. The
following examples illustrate the effect of using a Spanish sort against the employee names Chen and
Chung.

SQL> alter session set nls_sort = binary;

SQL> select employee_id EmpID,
 2 last_name "Last Name"
 3 from employees

242

Presenting Data Using Conventions Expected by the User

 4 where last_name like 'C%'
 5 order by last_name;

 EMPID Last Name
---------- -------------------------
 187 Cabrio
 148 Cambrault
 154 Cambrault
 110 Chen
 188 Chung
 119 Colmenares

SQL> alter session set nls_sort = spanish_m;

SQL> select employee_id EmpID,
 2 last_name "Last Name"
 3 from employees
 4 where last_name like 'C%'
 5 order by last_name;

 EMPID Last Name
---------- -------------------------
 187 Cabrio
 148 Cambrault
 154 Cambrault
 119 Colmenares
 110 Chen
 188 Chung

Oracle Error Messages
The NLS_LANGUAGE parameter also controls the language of the database error messages being returned
from the database. Setting this parameter prior to submitting your SQL statement ensures that the
language-specific database error messages will be returned to the application.

Consider the following server message:

ORA-00942: table or view does not exist

When the NLS_LANGUAGE parameter is set to French, the server message appears as follows:

ORA-00942: table ou vue inexistante

For more discussion of globalization support features in Oracle Database XE, see Working in a Global
Environment in the Oracle Database Express Edition 2 Day Developer Guide.

243

Globalization

244

CHAPTER 16

TESTING PHP AND THE OCI8 EXTENSION

This Chapter discusses installing and running the PHP source code tests for OCI8 on Linux. The PHP
source code includes tests for all the core functionality and extensions. You should run the tests after
building PHP on Linux.
You should also verify your applications work correctly with any new PHP binary before putting it into
production. This gives load and real-life testing not possible with PHP’s command-line test suite. Consider
contributing new tests to the PHP community. Adding tests that are relevant to your application reduces
the risks of PHP developers breaking PHP features important to you. Please send new tests or report issues
with PHP’s test suite to php-qa@lists.php.net. It is also a good idea to pro-actively test your
applications with PHP “release candidates” and snapshots, http://snaps.php.net. Please report
problems so they can be fixed before each final PHP release. This ensures PHP continues doing what you
need.

Running OCI8 Tests
The tests in php-5.2.7/ext/oci8/tests verify the behavior of the OCI8 extension. For the tests to run
successfully some configuration is needed.

To run the OCI8 tests:
1. Set the Oracle connection details, either by editing the details.inc test configuration file, or by setting

environment variables. To change the configuration file:

Edit php-5.2.7/ext/oci8/tests/details.inc and set the Oracle system user password for your database:

$user = "system";
$password = "systempwd";

In older versions of PHP these variables are located in connect.inc.

The tests rely on being able to create tables, types, stored procedures, and so on. If you change $user,
you may have to grant that database user extra privileges.

At the end of details.inc, set the connection string for the database:

$dbase = "localhost/XE";

If PHP is running on the same machine as the database, then also set:

$oracle_on_localhost = TRUE;

This specifies to test functionality where the Oracle database directly accesses files created by PHP. If
the database and PHP are not using the same file system, this is not possible and the variable should
be left FALSE.

245

http://snaps.php.net/

Testing PHP and the OCI8 Extension

Finally, with OCI8 1.3, and you are using Oracle Database 11g Connection Pooling, set:

$test_drcp = TRUE

To use DRCP, the pool must be enabled and the connection string must specify that a pooled database
server should be used.

Alternatively, with PHP 5.2.4 onwards, environment variables can be set instead of editing details.inc.
At the shell, set these environment variables.

$ export PHP_OCI8_TEST_USER=system
$ export PHP_OCI8_TEST_PASS=systempwd
$ export PHP_OCI8_TEST_DB=localhost/XE
$ export PHP_OCI8_TEST_DB_ON_LOCALHOST=TRUE
$ export PHP_OCI8_TEST_DRCP=FALSE

The variables correspond to the settings described above in section 1.

2. Check that variables_order has E in your php.ini, for example:

variables_order = "EGPCS"

Without this flag, the Oracle environment variables are not propagated through the test system and
tests fail to connect.

3. Set any necessary Oracle environment variables in your shell. For example, for PHP linked with Oracle
Database XE enter:

$ export OH=/usr/lib/oracle/xe/app/oracle/product/10.2.0/server
$. $OH/bin/oracle_env.sh

Note the space after the full stop. For other database versions run oraenv and enter the identifier of
your database:

$. /usr/local/bin/oraenv
ORACLE_SID = [] ? orcl

If Oracle is on a different machine, you may manually need to set the environment variables set
by these scripts.

4. Run PHP’s test suite with:

$ cd php-5.2.7
$ make test

If you want to run just the OCI8 tests use:

$ make test TESTS=ext/oci8

Each test script is executed and its status reported.

==

246

Running OCI8 Tests

PHP : /home/myhome/php-5.2.7/sapi/cli/php
PHP_SAPI : cli
PHP_VERSION : 5.2.7
ZEND_VERSION: 2.2.0
PHP_OS : Linux - Linux def 2.6.24-19-generic
INI actual : /usr/local/apache/conf/php.ini
More .INIs :
CWD : /home/myhome/php-5.2.7
Extra dirs :
==
Running selected tests.
PASS oci_bind_array_by_name() and invalid values 1 [array_bind_001.phpt]
PASS oci_bind_array_by_name() and invalid values 2 [array_bind_002.phpt]
PASS oci_bind_array_by_name() and invalid values 3 [array_bind_003.phpt]
...

Successful tests begin with PASS. Tests that are to be skipped in the current configuration are marked SKIP.
Failing tests are marked FAIL. A summary of the failing tests is given at the completion of the tests.

Running a Single Test
To run only one or two tests, call the run-tests.php script directly and pass the test names as parameters. For
example, to run the demotest.phpt script, do the following:

$ export TEST_PHP_EXECUTABLE=/home/myhome/php-5.2.7/sapi/cli/php
$ /home/myhome/php-5.2.7/sapi/cli/php run-tests.php \
> ext/oci8/tests/demotest.phpt

The TEST_PHP_EXECUTABLE variable contains the PHP binary with which to test demotest.phpt. In the
example, the same PHP binary is used to run the controlling run-tests.php script, but they could be different
executables. The test output is similar to the previous output.

Tests that Fail
The output of failing tests is kept for analysis. For example, if ext/oci8/tests/demotest.phpt fails, the following
files will be in php-5.2.7/ext/oci8/tests:

Table 19: Test files and their contents.

File name File Contents

demotest.phpt Test framework script

demotest.php PHP file executed

demotest.out Test output

demotest.exp Expected output as coded in the .phpt file

demotest.diff Difference between actual and expected output

demotest.log Actual and expected output in a single file

247

Testing PHP and the OCI8 Extension

Occasionally a few tests are known to fail. These might be for unfixed bugs, or where the PHP test
infrastructure doesn't practically allow tests to accept differences in versions of Oracle. If you use the latest
OCI8 extension with an older version of PHP, differences in PHP's var_dump() output will make tests
appear to fail.

Creating OCI8 Tests
To add a new OCI8 test, create a phpt file in php-5.2.7/ext/oci8/tests using the test file format. When you run
make test the new file is automatically run. For example, create demotest.phpt:

Script 90: demotest.phpt

--TEST--
Demo to test the Test system
--SKIPIF--
<?php
if (!extension_loaded('oci8')) die("skip no oci8 extension");
?>
--FILE--
<?php
require dirname(__FILE__).'/connect.inc';
$s = oci_parse($c, "select user from dual");
oci_execute($s);
oci_fetch_all($s, $res);
var_dump($res);
echo "Done\n";
?>
===DONE===
<?php exit(0); ?>
--EXPECT--
array(1) {
 ["USER"]=>
 array(1) {
 [0]=>
 string(6) "SYSTEM"
 }
}
===DONE===

The test begins with a comment that is displayed when the test runs. The SKIPIF section causes the test to
be skipped when the OCI8 extension is not enabled in PHP. The FILE section is the PHP code to be
executed. The EXPECT section has the expected output. The file connect.inc is found in
php-5.2.7/ext/oci8/tests/connect.inc. It includes details.inc, connects to Oracle, and returns the connection
resource in $c.

In PHP 5.3, you can use PHP's inbuilt constant __DIR__ instead of dirname(__FILE__) to locate the
correct included files, but this will limit test compatibility.

The line ===DONE=== is outside the executed script and is echoed verbatim, verifying that the script
completed. The extra PHP block containing exit(0) makes running the test directly in PHP a little cleaner.
Some of the PHPT content is shown, but only the actual, and not the expected output is displayed. This can
make it easier to quickly validate tests:

248

Creating OCI8 Tests

$ php demotest.phpt
--TEST--
Demo to test the Test system
--SKIPIF--
--FILE--
array(1) {
 ["USER"]=>
 array(1) {
 [0]=>
 string(6) "SYSTEM"
 }
}
Done
===DONE===

The page Writing Tests at http://qa.php.net/write-test.php shows other sections a test file can
have, including ways to set arguments and php.ini parameters. This page also has generic examples and
helpful information on writing tests.

Writing good units tests is an art. Making a test portable, accurate, simple and self-diagnosing requires
fine judgment and tidy programming. Application level testing brings even more challenges. There are
several PHP test frameworks with sophisticated features that might be more suited to your application test
suites. They include PHPUnit and SimpleTest.

OCI8 Test Helper Scripts
Along with connect.inc and details.inc, there are several useful scripts in php-5.2.7/ext/oci8/tests for creating
and dropping basic tables and types:

● create_table.inc

● create_type.inc

● drop_table.inc

● drop_type.inc

Each test should create any objects it needs and drop them at the end of the test.

Configuring the Database For Testing
Sometimes it is possible for rapidly executing OCI8 test scripts to flood the database with connections. This
may be noticeable with Oracle Database XE, which has smaller defaults. Random tests fail with errors like
the following:

ORA-12516 TNS:listener could not find available handler with matching protocol
stack
ORA-12520: TNS:listener could not find available handler for requested type of
server

The solution is to configure the database to suit the load. For the errors above, the number of “processes”
that Oracle can handle needs to be increased.

249

Testing PHP and the OCI8 Extension

To increase the number of processes in Oracle:
1. You may need to su as the oracle user so you have operating system privileges to start SQL*Plus:

$ su – oracle
Password:

2. Set the Oracle environment variables needed by SQL*Plus, for example:

$ export ORACLE_HOME=/usr/lib/oracle/xe/app/oracle/product/10.2.0/server
$. $ORACLE_HOME/bin/oracle_env.sh

3. Use SQL*Plus to connect as a privileged database user:

$ sqlplus / as sysdba

4. Check the current value of processes using the SHOW PARAMETER PROCESSES command:

SQL> show parameter processes
NAME TYPE VALUE
------------------------- ----------- -----------
 ...
processes integer 40

5. Increase the value to, say, 100:

SQL> alter system set processes=100 scope=spfile;
System altered.

6. Restart the database using the SHUTDOWN IMMEDIATE, followed by the STARTUP command:

SQL> shutdown immediate
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL> startup
ORACLE instance started.
Total System Global Area 289406976 bytes
Fixed Size 1258488 bytes
Variable Size 96472072 bytes
Database Buffers 188743680 bytes
Redo Buffers2932736 bytes
Database mounted.
Database opened.

7. Use the SHOW PARAMETER PROCESSES command to confirm the new value is in effect:

SQL> show parameter processes
NAME TYPE VALUE
------------------------- ----------- ----------
...
processes integer 100

250

Configuring the Database For Testing

8. Exit SQL*Plus using the EXIT command:

SQL> exit

9. Now the tests can be run again:

$ make test TESTS=ext/oci8

251

Testing PHP and the OCI8 Extension

252

APPENDIX A

TRACING OCI8 INTERNALS

This Appendix discusses tracing the OCI8 internals. To see exactly what calls to the Oracle database the
OCI8 extension makes, you can turn on debugging output. This is mostly useful for the maintainers of the
OCI8 extension.

Enabling OCI8 Debugging output
Tracing can be turned on in your script with oci_internal_debug(). For a script that connects and does
an insert:

Script 91: trace.php

<?php

oci_internal_debug(1); // turn on tracing
$conn = oci_connect("hr", "hrpwd", "localhost/XE");
$s = oci_parse($conn, "insert into testtable values ('my data')");
oci_execute($s, OCI_DEFAULT); // do not auto-commit

?>

You get output like:

OCI8 DEBUG: OCINlsEnvironmentVariableGet at (/php/ext/oci8/oci8.c:1822)
OCI8 DEBUG L1: Got NO cached connection at (/php/ext/oci8/oci8.c:1867)
OCI8 DEBUG: OCIEnvNlsCreate at (/php/ext/oci8/oci8.c:2772)
OCI8 DEBUG: OCIHandleAlloc at (/php/ext/oci8/oci8.c:2632)
OCI8 DEBUG: OCIHandleAlloc at (/php/ext/oci8/oci8.c:2644)
OCI8 DEBUG: OCISessionPoolCreate at (/php/ext/oci8/oci8.c:2662)
OCI8 DEBUG: OCIAttrSet at (/php/ext/oci8/oci8.c:2674)
OCI8 DEBUG L1: create_spool: (0x8959b70) at (/php/ext/oci8/oci8.c:2690)
OCI8 DEBUG L1: using shared pool: (0x8959b70) at (/php/ext/oci8/oci8.c:2972)
OCI8 DEBUG: OCIHandleAlloc at (/php/ext/oci8/oci8.c:2983)
OCI8 DEBUG: OCIHandleAlloc at (/php/ext/oci8/oci8.c:2993)
OCI8 DEBUG: OCIAttrSet at (/php/ext/oci8/oci8.c:3002)
OCI8 DEBUG: OCIAttrSet at (/php/ext/oci8/oci8.c:3014)
OCI8 DEBUG: OCIAttrGet at (/php/ext/oci8/oci8.c:3026)
OCI8 DEBUG: OCIAttrGet at (/php/ext/oci8/oci8.c:3027)
OCI8 DEBUG L1: (numopen=0)(numbusy=0) at (/php/ext/oci8/oci8.c:3029)
OCI8 DEBUG: OCISessionGet at (/php/ext/oci8/oci8.c:3040)
OCI8 DEBUG: OCIAttrGet at (/php/ext/oci8/oci8.c:3055)
OCI8 DEBUG: OCIAttrGet at (/php/ext/oci8/oci8.c:3057)
OCI8 DEBUG: OCIContextGetValue at (/php/ext/oci8/oci8.c:3059)
OCI8 DEBUG: OCIContextGetValue at (/php/ext/oci8/oci8.c:3154)
OCI8 DEBUG: OCIMemoryAlloc at (/php/ext/oci8/oci8.c:3161)
OCI8 DEBUG: OCIContextSetValue at (/php/ext/oci8/oci8.c:3175)

253

Tracing OCI8 Internals

OCI8 DEBUG: OCIAttrSet at (/php/ext/oci8/oci8.c:3085)
OCI8 DEBUG L1: New Non-Persistent Connection address: (0x88e0adc) at
(/php/ext/oci8/oci8.c:2093)
OCI8 DEBUG L1: num_persistent=(0), num_links=(1) at (/php/ext/oci8/oci8.c:2095)
OCI8 DEBUG: OCIHandleAlloc at (/php/ext/oci8/oci8_statement.c:57)
OCI8 DEBUG: OCIStmtPrepare2 at (/php/ext/oci8/oci8_statement.c:72)
OCI8 DEBUG: OCIAttrSet at (/php/ext/oci8/oci8_statement.c:122)
OCI8 DEBUG: OCIAttrGet at (/php/ext/oci8/oci8_statement.c:396)
OCI8 DEBUG: OCIStmtExecute at (/php/ext/oci8/oci8_statement.c:420)
OCI8 DEBUG: OCIStmtRelease at (/php/ext/oci8/oci8_statement.c:723)
OCI8 DEBUG: OCIHandleFree at (/php/ext/oci8/oci8_statement.c:731)
OCI8 DEBUG: OCITransRollback at (/php/ext/oci8/oci8.c:2167)
OCI8 DEBUG: OCISessionRelease at (/php/ext/oci8/oci8.c:2330)
OCI8 DEBUG: OCIHandleFree at (/php/ext/oci8/oci8.c:2214)
OCI8 DEBUG: OCIHandleFree at (/php/ext/oci8/oci8.c:2217)
OCI8 DEBUG: OCISessionPoolDestroy at (/php/ext/oci8/oci8.c:3122)
OCI8 DEBUG: OCIHandleFree at (/php/ext/oci8/oci8.c:3126)
OCI8 DEBUG: OCIHandleFree at (/php/ext/oci8/oci8.c:3130)
OCI8 DEBUG: OCIHandleFree at (/php/ext/oci8/oci8.c:3134)
OCI8 DEBUG: OCIHandleFree at (/php/ext/oci8/oci8.c:1114)
OCI8 DEBUG: OCIHandleFree at (/php/ext/oci8/oci8.c:1119)

Many of these calls just allocate local resources (handles) and set local state (attributes), but some require a
round trip to the database.

One of these is the OCITransRollback() call near the end of the script. The OCI_DEFAULT flag said
not to auto-commit and there was no explicit oci_commit() call. As part of PHP’s end of HTTP request
shutdown at the conclusion of the script, the rollback was issued.

If you change to auto-commit mode you will not see a call to OCITransCommit() because the commit
message is piggy-backed with Oracle's statement execution call, thus saving a round-trip. If a script only
inserts one row it is fine to auto-commit. Otherwise, do the transaction management yourself.

254

APPENDIX B

OCI8 PHP.INI PARAMETERS

This Appendix lists the php.ini parameters for the OCI8 extension. Discussion of their use is covered in
previous chapters.

The parameter values can be changed in the PHP configuration file php.ini, for example:

oci8.default_prefetch = 75

Variables can also be set in httpd.conf:

<IfModule mod_php5.c>
 php_admin_flag oci8.old_oci_close_semantics On
 php_admin_value oci8.connection_class MYPHPAPP
</IfModule>

The web server must be restarted for any changes to take effect.
The location of php.ini and the current values of the OCI8 parameters can be found by running the

command line PHP executable with the -i option, or by loading this script in a browser:

Script 92: phpinfo.php

<?php
phpinfo();
?>

If you are using Windows Vista, remember to edit php.ini using administrative privileges.

Table 20: OCI8 php.ini parameters

Name Default Valid Range Description
oci8.connection_class null A short

string
A user-chosen name for Oracle
Database 11g Connection Pooling
(DRCP). In general, use the same name
for all web servers running the same
application. Can also be set with
ini_set().

Introduced in OCI8 1.3.

255

OCI8 php.ini Parameters

Name Default Valid Range Description
oci8.events Off Off or On Allows PHP to receive Fast Application

Notification (FAN) events from Oracle
to give immediate notification of a
database node or network failure. The
database must be configured to post
events.

Introduced in OCI8 1.3.
oci8.max_persistent -1 >= -1

-1 means no
limit

Maximum number of persistent
connections each PHP process caches.

oci8.old_oci_close_semantics Off Off or On Toggles whether oci_close() uses
the old behavior, which was a “no-op”.

oci8.persistent_timeout -1 > -1

-1 means no
timeout

How many seconds a persistent
connection is allowed to remain idle
before being terminated.

oci8.ping_interval 60 >= 0

-1 means no
extra
checking

How many seconds a persistent
connection can be unused before an
extra check at connection verifies the
database connection is still valid.

oci8.privileged_connect Off Off or On Toggles whether SYSDBA and
SYSOPER connections are permitted.

oci8.statement_cache_size 20 > 0 Improves database performance by
caching the given number of SQL
statements in PHP.

256

APPENDIX C

OCI8 FUNCTION NAMES IN PHP 4 AND
PHP 5

In PHP 5 several extensions including OCI8 underwent name standardization. PHP 4 functions like
OCILogin() became oci_connect(), OCIParse() became oci_parse(), and so on. The old OCI8
names still exist as aliases, so PHP 4 scripts do not necessarily need to be changed. PECL OCI8 releases
from 1.1 onwards have the name standardization change.

Note: The OCI8 1.3 extension builds and runs with PHP 4 too. If you are using PHP 4 and cannot upgrade to PHP 5, you should
replace the OCI8 code with the new version to get improved stability and performance optimizations. Steps to do this are given in
this book.

One side effect of renaming the function names is that user contributed comments in the PHP manual
(http://www.php.net/oci8) are found in two different places. The comments are either on the page
for the old syntax, or on the page for the new syntax. Where a function has an alias, check both manual
pages for user tips.

Function names in PHP are case insensitive and it is common to see the PHP 4 names written with a
capitalized prefix.

Table 21 shows the OCI8 function names in PHP 4 and PHP 5 where names or functionality differ.

Table 21: Relationship between OCI8's PHP 4 and PHP 5 function names.

Operation Action PHP 4 Name PHP 5 Name

Connection Open
connection

ocilogon() oci_connect()

 Open new
connection

ocinlogon() oci_new_connect()

 Persistent
connection

ociplogon() oci_pconnect()
(and new php.ini parameters)

 Close
connection

ocilogoff() oci_close()

Cursor Open cursor ocinewcursor() oci_new_cursor()

 Close cursor ocifreecursor()
ocifreestatement()

oci_free_statement()

257

OCI8 Function Names in PHP 4 and PHP 5

Operation Action PHP 4 Name PHP 5 Name

Parsing Parse
statement

ociparse() oci_parse()

Binding Bind variable ocibindbyname() oci_bind_by_name()

 Bind array Not available oci_bind_array_by_name()

Defining Define
output
variables

ocidefinebyname() oci_define_by_name()

Execution Execute
statement

ociexecute() oci_execute()

Fetching Fetch row ocifetch() oci_fetch()

 Fetch row ocifetchinto() oci_fetch_array()
oci_fetch_row()
oci_fetch_assoc()
oci_fetch_object()

 Fetch all rows ocifetchstatement() oci_fetch_all()

 Fetch column ociresult() oci_result()

 Is the column
NULL?

ocicolumnisnull() oci_field_is_null()

 Cancel Fetch ocicancel() oci_cancel()

Transaction
Management

Commit ocicommit() oci_commit()

 Rollback ocirollback() oci_rollback()

Descriptors ocinewdescriptor() oci_new_descriptor()
ocifreedesc() oci_free_descriptor()

Error
Handling

ocierror() oci_error()

258

OCI8 Function Names in PHP 4 and PHP 5

Operation Action PHP 4 Name PHP 5 Name

Long Objects
(LOBs)

Note: Methods
on a collection
object can be
used in
addition to
these
functions.

ocisavelob() oci_lob_save()

ocisavelobfile() oci_lob_import()
ociwritelobtofile() oci_lob_export()
ociwritetemporarylob() OCI-Lob->writeTemporary()
ociloadlob() oci_lob_load()
ocicloselob() OCI-Lob->close()

Collections

Note: Methods
on a collection
object can be
used in
addition to
these
functions.

 ocinewcollection() oci_new_collection()

ocifreecollection() oci_free_collection()
ocicollappend() oci_collection_append()
ocicollgetelem() oci_collection_element_get()
ocicollassign() OCI-Collection->assign()

ocicollassignelem() oci_collection_element_assign()
ocicollsize() oci_collection_size()
ocicollmax() oci_collection_max()
ocicolltrim() oci_collection_trim()

Metadata Statement
type

ocistatementtype() oci_statement_type()

259

OCI8 Function Names in PHP 4 and PHP 5

Operation Action PHP 4 Name PHP 5 Name

 Name of
result column

ocicolumnname() oci_field_name()

 Size of result
column

ocicolumnsize() oci_field_size()

 Datatype of
result column

ocicolumntype() oci_field_type()

 Datatype of
result column

ocicolumntyperaw() oci_field_type_raw()

 Precision of
result column

ocicolumnprecision() oci_field_precision()

 Scale of result
column

ocicolumnscale() oci_field_scale()

 Number of
rows affected

ocirowcount() oci_num_rows()

 Number of
columns
returned

ocinumcols() oci_num_fields()

Changing
Password

 ocipasswordchange() oci_password_change()

Tracing ociinternaldebug() oci_internal_debug()

Server Version ociserverversion() oci_server_version()

Tuning ocisetprefetch() oci_set_prefetch()
(and new php.ini parameter)

260

APPENDIX D

THE OBSOLETE ORACLE EXTENSION

This Appendix discusses the obsolete Oracle PHP extension. Very rarely you might come across PHP
scripts that use the early Oracle extension. This extension is obsolete and is no longer included with PHP.
The functionality it offered was limited, and upgrading to the new OCI8 extension might be as simple as
enabling the newer OCI8 extension in the PHP binary, and changing the ora_ function calls in your scripts.
Paying some attention to transaction management and connection handling is wise to make sure all your
data is committed when you expect it to be.

This Chapter gives a comparison of the obsoleted Oracle PHP extension and the current OCI8
extension.

Oracle and OCI8 Comparison
Table 22 shows the general relationship between the obsolete and current extensions.

Table 22: Relationship between the OCI8 and the obsolete Oracle extensions.

Operation Action ORA function (obsolete) OCI8 function

Connection Open connection ora_logon() oci_connect()

 Open new
connection

Not available oci_new_connect()

 Persistent
connection

ora_plogon() oci_pconnect()
(and new php.ini parameters)

 Close connection ora_logoff() oci_close()

Cursor Open cursor ora_open() oci_new_cursor()

 Close cursor ora_close() oci_free_statement()

Parsing Parse statement ora_parse() oci_parse()

Binding Bind variable ora_bind() oci_bind_by_name()

 Bind array Not applicable oci_bind_array_by_name()

Execution Execute
statement

ora_exec() oci_execute()

261

The Obsolete Oracle Extension

Operation Action ORA function (obsolete) OCI8 function

 Prepare, execute
and fetch

ora_do() oci_parse()
oci_execute()
Followed by one of:
oci_fetch_all()
oci_fetch_array()
oci_fetch_assoc()
oci_fetch_object()
oci_fetch_row()
oci_fetch()

Fetching Fetch row ora_fetch() oci_fetch()

 Fetch row ora_fetch_into oci_fetch_array()
oci_fetch_row()
oci_fetch_assoc()
oci_fetch_object()

 Fetch all rows Not applicable oci_fetch_all()

 Fetch column ora_getcolumn() oci_result()

 Is the column
NULL?

Not applicable oci_field_is_null()

 Cancel Fetch Not applicable oci_cancel()

Transaction
Management

Commit ora_commit() oci_commit()

 Commit mode ora_commiton()
ora_commitoff()

Pass OCI_DEFAULT flag to
oci_execute()

 Rollback ora_rollback() oci_rollback()

Error
Handling

ora_error()
ora_errorcode()

oci_error()

262

Oracle and OCI8 Comparison

Operation Action ORA function (obsolete) OCI8 function

Long Objects
(LOBS)

 Not applicable OCI-Lob->append
OCI-Lob->close
OCI-Lob->eof
OCI-Lob->erase
OCI-Lob->export
OCI-Lob->flush
OCI-Lob->free
OCI-Lob->getBuffering
OCI-Lob->import
OCI-Lob->load
OCI-Lob->read
OCI-Lob->rewind
OCI-Lob->save
OCI-Lob->saveFile
OCI-Lob->seek
OCI-Lob->setBuffering
OCI-Lob->size
OCI-Lob->tell
OCI-Lob->truncate
OCI-Lob->write
OCI-Lob->writeTemporary
OCI-Lob->writeToFile

Collections Not applicable OCI-Collection->append
OCI-Collection->assign
OCI-Collection->assignElem
OCI-Collection->free
OCI-Collection->getElem
OCI-Collection->max
OCI-Collection->size
OCI-Collection->trim

Metadata Statement type Not applicable oci_statement_type()

 Name of result
column

ora_columnname() oci_field_name()

263

The Obsolete Oracle Extension

Operation Action ORA function (obsolete) OCI8 function

 Size of result
column

ora_columnsize() oci_field_size()

 Datatype of result
column

ora_columntype() oci_field_type()
oci_field_type_raw()

 Precision of result
column

Not applicable oci_field_precision()

 Scale of result
column

Not applicable oci_field_scale()

 Number of rows
effected

ora_numrows() oci_num_rows()

 Number of
columns returned

ora_numcols() oci_num_fields()

Changing
Password

 Not applicable oci_password_change()

Tracing Not applicable oci_internal_debug()

Server
Version

Not applicable oci_server_version()

Tuning Not applicable oci_set_prefetch()
(and new php.ini parameter)

264

APPENDIX E

RESOURCES

This Appendix gives links to documentation, resources and articles discussed in this book, and to other
web sites of interest. This book itself can be found online at:
http://www.oracle.com/technology/tech/php/pdf/underground-php-oracle-
manual.pdf

General Information and Forums

PHP Developer Center on Oracle Technology Network (OTN)
http://www.oracle.com/technology/tech/php/index.html

OTN PHP Discussion Forum
http://www.oracle.com/technology/forums/php.html

Blog: Christopher Jones on OPAL
http://blogs.oracle.com/opal/

Blog: Alison Holloway on PHP
http://blogs.oracle.com/alison/

AskTom
General Oracle language and application design help
http://asktom.oracle.com/

Oracle Metalink
Oracle Support web site
http://metalink.oracle.com/

Oracle’s Free and Open Source Software
http://oss.oracle.com/

Oracle Documentation

Oracle Documentation Portal
http://tahiti.oracle.com/

265

http://tahiti.oracle.com/
http://oss.oracle.com/
http://metalink.oracle.com/
http://asktom.oracle.com/
http://blogs.oracle.com/alison/
http://blogs.oracle.com/opal/
http://www.oracle.com/technology/forums/php.html
http://www.oracle.com/technology/tech/php/index.html
http://www.oracle.com/technology/tech/php/pdf/underground-php-oracle-manual.pdf
http://www.oracle.com/technology/tech/php/pdf/underground-php-oracle-manual.pdf

Resources

Oracle Call Interface Programmer's Guide
Oracle Database 11g Release 1 (11.1)
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28395/toc.htm

Oracle Database Express Edition 2 Day Plus PHP Developer Guide
http://download.oracle.com/docs/cd/B25329_01/doc/appdev.102/b25317/toc.htm

Oracle Database 10g Express Edition Documentation
Oracle Database 10g Express Edition (XE) Release 2 (10.2)
http://www.oracle.com/pls/xe102/homepage

Oracle Database Express Edition, 2 Day Plus Locator Developer Guide
Oracle Database 10g Release 2 (10.2)
http://download.oracle.com/docs/cd/B25329_01/doc/appdev.102/b28004/toc.htm

Oracle Database Net Services Administrator's Guide
Oracle Database 11g Release 1 (11.1)
http://download.oracle.com/docs/cd/B28359_01/network.111/b28316/toc.htm

Oracle Database PL/SQL Language Reference
Oracle Database 11g Release 1 (11.1)
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28370/toc.htm

Oracle Database SQL Language Reference
Oracle Database 11g Release 1 (11.1)
http://download.oracle.com/docs/cd/B28359_01/server.111/b28286/toc.htm

Selected PHP and Oracle Books

Oracle Database AJAX & PHP Web Application Development
Lee Barney and Michael McLaughlin, Oracle Press, 2008

PHP Oracle Web Development
Yuli Vasiliev, Packt Publishing, 2007

Beginning PHP and Oracle: From Novice to Professional
W. Jason Gilmore and Bob Bryla, Apress, 2007

Application Development with Oracle & PHP on Linux for Beginners
Ivan Bayross and Sharanam Shah, Shroff Publishers & Distributers, 2nd Edition 2007

266

http://download.oracle.com/docs/cd/B28359_01/server.111/b28286/toc.htm
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28370/toc.htm
http://download.oracle.com/docs/cd/B28359_01/network.111/b28316/toc.htm
http://download.oracle.com/docs/cd/B25329_01/doc/appdev.102/b28004/toc.htm
http://www.oracle.com/pls/xe102/homepage
http://download.oracle.com/docs/cd/B25329_01/doc/appdev.102/b25317/toc.htm
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28395/toc.htm

Selected PHP and Oracle Books

Oracle Database 10g Express Edition PHP Web Programming
Michael McLaughlin, Osbourne Oracle Press, 2006

Easy Oracle PHP: Create Dynamic Web Pages with Oracle Data
Mladen Gogala, Rampant TechPress, 2006

Articles and Other References
http://www.oracle.com/technology/tech/php/htdocs/php_troubleshooting_faq.htm
l

PHP Scalability and High Availability
Oracle Whitepaper, April 2008
http://www.oracle.com/technology/tech/php/pdf/php-scalability-ha-twp.pdf

Oracle Database 11g PL/SQL Programming
Michael McLaughlin, Oracle Press, 2008. Contains a PHP primer.

Improving Performance Through Persistent Connections
John Coggeshall
http://www.oracle.com/technology/pub/articles/oracle_php_cookbook/coggeshall
_persist.html

Using PHP 5 with Oracle XML DB
Yuli Vasiliev
http://www.oracle.com/technology/oramag/oracle/05-jul/o45php.html

An Overview on Globalizing Oracle PHP Applications
http://www.oracle.com/technology/tech/php/pdf/globalizing_oracle_php_applica
tions.pdf

The PHP 5 Data Object (PDO) Abstraction Layer and Oracle
Wez Furlong
http://www.oracle.com/technology/pub/articles/php_experts/otn_pdo_oracle5.ht
ml

Software and Source Code

PHP Distribution Releases
Source and Windows binaries
http://www.php.net/downloads.php

267

http://www.php.net/downloads.php
http://www.oracle.com/technology/pub/articles/php_experts/otn_pdo_oracle5.html
http://www.oracle.com/technology/pub/articles/php_experts/otn_pdo_oracle5.html
http://www.oracle.com/technology/tech/php/pdf/globalizing_oracle_php_applications.pdf
http://www.oracle.com/technology/tech/php/pdf/globalizing_oracle_php_applications.pdf
http://www.oracle.com/technology/oramag/oracle/05-jul/o45php.html
http://www.oracle.com/technology/pub/articles/oracle_php_cookbook/coggeshall_persist.html
http://www.oracle.com/technology/pub/articles/oracle_php_cookbook/coggeshall_persist.html
http://www.oracle.com/technology/tech/php/pdf/php-scalability-ha-twp.pdf
http://www.oracle.com/technology/tech/php/htdocs/php_troubleshooting_faq.html
http://www.oracle.com/technology/tech/php/htdocs/php_troubleshooting_faq.html

Resources

PHP Snapshots
Snapshots of PHP's source code and Windows binaries
http://snaps.php.net/

PECL OCI8
Source package
http://pecl.php.net/package/oci8

PECL PDO_OCI
Source snapshot
http://pecl.php.net/package/PDO_OCI

Zend Core for Oracle
http://www.oracle.com/technology/tech/php/zendcore/

Oracle Instant Client
http://www.oracle.com/technology/tech/oci/instantclient/

OCI8 Source Code in CVS
http://cvs.php.net/viewcvs.cgi/php-src/ext/oci8/

Oracle SQL Developer
Downloads and documentation
http://www.oracle.com/technology/products/database/sql_developer/index.html

ADOdb Database Abstraction Library for PHP (and Python)
http://adodb.sourceforge.net/

PHP Extension for JDeveloper
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchan
ge/php/index.html

PHPUnit PHP Unit Tester
http://www.phpunit.de/

SimpleTest PHP Unit Tester
http://www.simpletest.org/

Xdebug - Debugger and Profiler Tool for PHP
http://www.xdebug.org/

268

http://www.xdebug.org/
http://www.simpletest.org/
http://www.phpunit.de/
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/php/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/php/index.html
http://adodb.sourceforge.net/
http://www.oracle.com/technology/products/database/sql_developer/index.html
http://cvs.php.net/viewcvs.cgi/php-src/ext/oci8/
http://www.oracle.com/technology/tech/oci/instantclient/
http://www.oracle.com/technology/tech/php/zendcore/
http://pecl.php.net/package/PDO_OCI
http://pecl.php.net/package/oci8
http://snaps.php.net/

PHP Links

PHP Links

PHP Home Page
http://www.php.net/

General PHP Documentation
http://www.php.net/docs.php

PHP Oracle OCI8 Documentation
http://www.php.net/oci8

PHP PDO Documentation
http://www.php.net/pdo

PHP Quality Assurance Site
http://qa.php.net/

PHP Bug System
http://bugs.php.net/

PHP Wiki
http://wiki.php.net/

269

http://wiki.php.net/
http://bugs.php.net/
http://qa.php.net/
http://www.php.net/pdo
http://www.php.net/oci8
http://www.php.net/docs.php
http://www.php.net/

Resources

270

GLOSSARY

Anonymous Block
A PL/SQL block that appears in your application and is not named or stored in the database. In many
applications, PL/SQL blocks can appear wherever SQL statements can appear. A PL/SQL block groups
related declarations and statements. Because these blocks are not stored in the database, they are
generally for one-time use.

AWR
Automatic Workload Repository. Used to store and report statistics on database performance.

Binding
A method of including data in SQL statements that allows SQL statements to be efficiently reused with
different data.

BFILE
The BFILE datatype stores unstructured binary data in operating-system files outside the database. A
BFILE column or attribute stores a file locator that points to an external file containing the data.

BLOB
The BLOB datatype stores unstructured binary data in the database.

CHAR
The CHAR datatype stores fixed-length character strings in the database.

CLOB and NCLOB
The CLOB and NCLOB datatypes store up to 8 terabytes of character data in the database. CLOBs store
database character set data, and NCLOBs store Unicode national character set data.

Collection Type
A collection is an ordered group of elements, all of the same type. Each element has a unique subscript
that determines its position in the collection. PL/SQL datatypes TABLE and VARRAY enable collection
types such as arrays, bags, lists, nested tables, sets and trees.

Connection Identifier
The string used to identify which database to connect to, for example, localhost/XE.

271

Glossary

Connection String
The full string used to identify which database to connect to commonly used for SQL*Plus. It contains
the username, password and connect identifier, for example, hr/hrpwd@localhost/XE.

CVS
Concurrent Versions System, an open source version control system used for development of PHP.

Data Dictionary
A set of tables and views that are used as a read-only reference about the database.

Database
A database stores and retrieves data. Each database consists of one or more data files. Although you
may have more than one database per machine, typically a single Oracle database contains multiple
schemas. A schema is often equated with a user. Multiple applications can use the same database
without any conflict by using different schemas.

Database Link
A pointer that defines a one-way communication path from an Oracle Database server to another
database server. A database link connection allows local users to access data on a remote database.

Database Name
The name of the database. In PHP, this is the text used in oci_connect() calls. Also see Easy Connect.

Datatype
Each column value and constant in a SQL statement has a datatype, which is associated with a specific
storage format, constraints, and a valid range of values. When you create a table, you must specify a
datatype for each of its columns. For example, NUMBER, or DATE.

DATE
The DATE datatype stores point-in-time values (dates and times) in a database table.

DBA
Database Administrator. A person who administers the Oracle database. This person is a specialist in
Oracle databases, and would usually have SYSDBA access to the database.

DDL
SQL’s Data Definition Language. SQL statements that define the database structure or schema, like
CREATE, ALTER, and DROP.

272

Glossary

DML
SQL’s Data Manipulation Language. SQL statements that define or manage the data in the database,
like SELECT, INSERT, UPDATE and DELETE.

Easy Connect
A simple hostname and database name string that is used to identify which database to connect to.

HR
The sample user created by default with an Oracle seed database installation. The hr user has access to
the Human Resources demonstration tables in the HR schema.

Index
Indexes are optional structures associated with database tables. Indexes can be created to increase the
performance of data retrieval.

Instance
The Oracle Instance is the running component of an Oracle database server. When an Oracle database
is started, a system global area (SGA) is allocated and Oracle background processes are started. The
combination of the background processes and memory buffers is called an Oracle instance.

Instant Client
The Oracle Instant Client is a small set of libraries, which allow you to connect to an Oracle Database. A
subset of the full Oracle Client, it requires minimal installation but has full functionality. Instant Client
is downloadable from OTN and is usable and distributable for free.

LOB
A large object. LOBS may be persistent (stored in the database) or temporary. See CLOB, BLOB, and
BFILE.

LOB Locator
A “pointer” to LOB data.

Materialized View
A materialized view provides access to table data by storing the results of a query in a separate
database schema object. Unlike an ordinary view, which does not take up any storage space or contain
any data, a materialized view contains the rows resulting from a query against one or more base tables
or views.

273

Glossary

NCHAR and NVARCHAR2
NCHAR and NVARCHAR2 are Unicode datatypes that store Unicode character data in the database.

NUMBER
The NUMBER datatype stores fixed and floating-point numbers in the database.

Packages
A package is a group of related PL/SQL procedures and functions, along with the cursors and variables
they use, stored together in the database for continued use as a unit.

Procedures and Functions
A PL/SQL procedure or function is a schema object that consists of a set of SQL statements and other
PL/SQL programming constructs, grouped together, stored in the database, and run as a unit to solve a
specific problem or perform a set of related tasks.

Object Privilege
A right to perform a particular action on a specific database schema object. Different object privileges
are available for different types of schema objects. The privilege to delete rows from the departments
table is an example of an object privilege.

ORACLE_HOME install
An Oracle Client or Oracle Database install. These installs contain all software required by PHP in a
directory hierarchy. This set of directories includes binaries, utilities, configuration scripts,
demonstration scripts and error message files for each component of Oracle. Any program using Oracle
typically requires the ORACLE_HOME environment variable to be set to the top level installation
directory.

Oracle Net
The networking component of Oracle that connects client tools such as PHP to local or remote
databases. The Oracle Net listener is a process that handles connection requests from clients and passes
them to the target database.

OTN
The Oracle Technology Network is Oracle’s free repository of articles on Oracle technologies. It also
hosts software downloads and many discussion forums, including one on PHP.

Package
A group of PL/SQL procedures, functions, and variable definitions stored in the Oracle database.
Procedures, functions, and variables in packages can be called from other packages, procedures, or
functions.

274

Glossary

PEAR
The PHP Extension and Application Repository (PEAR) is a repository for reusable packages written in
PHP.

PECL
The PHP Extension Community Library (PECL) is a repository of PHP extensions that can be linked
into the PHP binary.

PHP
A popular, interpreted scripting language commonly used for web applications. PHP is a recursive
acronym for “PHP: Hypertext Preprocessor”.

php.ini
The configuration file used by PHP. Many (but not all) options that are set in php.ini can also be set at
runtime using ini_set().

PL/SQL
Oracle’s procedural language extension to SQL. It is a server-side, stored procedural language that
enables you to mix SQL statements with procedural constructs. With PL/SQL, you can create and run
PL/SQL program units such as procedures, functions, and packages. PL/SQL program units generally
are categorized as anonymous blocks, stored functions, stored procedures, and packages.

Prepared Statement
A SQL statement that has been parsed by the database. In Oracle, it is generally called a parsed
statement.

Regular Expression
A pattern used to match data. Oracle has several functions that accept regular expressions.

Round Trip
A call and return sequence from PHP OCI8 to the Database performed by the underlying driver
libraries. Each round trip takes network time and machine CPU resources. The fewer round trips
performed, the more scalable a system is likely to be. PHP OCI8 functions may initiate zero or many
round trips.

Schema
A schema is a collection of database objects. A schema is owned by a database user and has the same
name as that user. Schema objects are the logical structures that directly refer to the database's data.
Schema objects include structures like tables, views, and indexes.

275

Glossary

SDK
Software Development Kit. Oracle Instant Client has an SDK for building programs that use the Instant
Client libraries.

Sequence
A sequence (a sequential series of numbers) of Oracle integers of up to 38 digits defined in the
database.

Service Name
A service name is a string that is the global database name, comprised of the database name and
domain name. You can obtain it from the SERVICE_NAMES parameter in the database initialization
parameter file or by using SHOW PARAMETERS in SQL*Plus. It is used during connection to identify
which database to connect to.

SID (System Identifier)
The system identifier is commonly used to mean the database name alias in the connection string.

SID (Session Identifier)
A session identifier is a unique number assigned to each database user session when they connect to
the database.

SQL*Plus
The traditional command line tool for executing SQL statements available with all Oracle databases.
Although recently superseded by GUI tools like Oracle’s free SQL Developer, SQL*Plus remains hugely
popular. It is also convenient to show examples using SQL*Plus.

Stored Procedures and Functions
A PL/SQL block that Oracle stores in the database and can be called by name from an application.
Functions are different than procedures in that functions return a value when executed. When you
create a stored procedure or function, Oracle parses the procedure or function, and stores its parsed
representation in the database.

Synonym
A synonym is an alias for any database table, view, materialized view, sequence, procedure, function,
package, type, Java class schema object, user-defined object type, or another synonym.

SYS
An Oracle database administrative user account name. sys has access to all base tables and views for
the database data dictionary.

276

Glossary

SYSDBA
An Oracle database system privilege that, by default, is assigned only to the sys user. It enables sys to
perform high-level administrative tasks such as starting up and shutting down the database.

SYSOPER
Similar to sysdba, but with a limited set of privileges that allows basic administrative tasks without
having access to user data.

SYSTEM
An Oracle database administrative user account name that is used to perform all administrative
functions other than starting up and shutting down the database.

System privilege
The right to perform a particular action, or to perform an action on any database schema objects of a
particular type. For example, the privileges to create tables and to delete the rows of any table in a
database.

Table
Tables are the basic unit of data storage. Database tables hold all user-accessible data. Each table has
columns and rows.

Tablespace
Tablespaces are the logical units of Oracle data storage made up of one or more datafiles. Tablespaces
are often created for individual applications because tablespaces can be conveniently managed. Users
are assigned a default tablespace that holds all the data the users creates. A database is made up of
default and DBA-created tablespaces.

Temporary LOB
See LOB.

Temporary Table
A Global Temporary Table is a special table that holds session-private data that exists only for the
duration of a transaction or session. The table is created before the application runs.

Tnsnames.ora
The Oracle Net configuration file used for connecting to a database. The file maps an alias to a local or
remote database and allows various configuration options for connections. The alias is used in the PHP
connection string. TNS stands for Transparent Network Substrate.

277

Glossary

Transaction
A sequence of SQL statements whose changes are either all committed, or all rolled back.

Trigger
A stored procedure associated with a database table, view, or event. The trigger can be called after the
event, to record it, or take some follow-up action. The trigger can be called before the event, to prevent
erroneous operations or fix new data so that it conforms to business

User
A database user is often equated to a schema. Each user connects to the database with a username and
secret password, and has access to tables, and so on, in the database.

VARCHAR and VARCHAR2
These datatypes store variable-length character strings in the database. The names are currently
synonyms but VARCHAR2 is recommended to ensure maximum compatibility of applications in
future.

View
Views are customized presentations of data in one or more tables or other views. A view can also be
considered a stored query. Views do not actually contain data. Rather, they derive their data from the
tables on which they are based, referred to as the base tables of the views.

XMLType
XMLType is a database datatype that can be used to store XML data in table columns.

278

The Underground PHP and Oracle® Manual

About this Book
This book is for PHP programmers developing applications for
an Oracle database. It bridges the gap between the many PHP
and the many Oracle books available. It shows how to use the
PHP scripting language with the Oracle database, from
installation to using them together efficiently.

You may be starting out with PHP for your Oracle
database. You may be a PHP programmer wanting to learn
Oracle. You may be unsure how to install PHP or Oracle. Or
you may just want to know the latest best practices. This book
gives you the fundamental building blocks needed to create
high performance PHP Oracle web applications.

About the Authors
Christopher Jones works for Oracle on dynamic scripting languages with a strong focus on
PHP. He is is a lead maintainer of PHP's open source OCI8 extension and liaises closely with
the PHP community. He also helps make future versions of the Oracle database better for PHP.
He is the author of various technical articles on PHP and Oracle, and has presented at
conferences including PHP|Tek, the International PHP Conference, the O'Reilly Open Source
Convention, and ZendCon. He also helps present Oracle-PHP tutorials and PHPFests
worldwide.

Alison Holloway is a Senior Product Manager at Oracle with a number of years experience in
advanced technology. She has presented at various PHP conferences. Most recently she has
been working with Oracle VM.

	Introduction
	Who Should Read This Book?
	Introduction to Oracle
	Databases and Instances
	Tablespaces
	Schemas and Users

	Introduction to PHP

	Getting Started With PHP
	Creating and Editing PHP Scripts
	PHP Syntax Overview
	Running PHP Scripts
	Running PHP Scripts in a Browser
	Running Scripts with Command Line PHP
	Debugging PHP Scripts

	PHP Oracle Extensions
	PHP Oracle Extensions
	Oracle Extension
	OCI8 Extension
	PDO Extension

	PHP Database Abstraction Libraries
	ADOdb
	PEAR DB
	PEAR MDB2

	Getting the OCI8 Extension
	OCI8 and Oracle Installation Options

	Getting the PDO Extension
	Zend Core for Oracle
	The PHP Release Cycle

	Installing Oracle Database 10g Express Edition
	Oracle Database Editions
	Oracle Database XE
	Installing Oracle Database XE on Linux
	Installing Oracle Database XE on Debian, Ubuntu, and Kubuntu
	Installing Oracle Database XE on Windows
	Testing the Oracle Database XE Installation
	Configuring Oracle Database XE
	Setting the Oracle Database XE Environment Variables on Linux
	Enabling Database Startup and Shutdown from Menus on Linux
	Starting and Stopping the Listener and Database
	Starting and Stopping the Listener and Database on Linux
	Starting and Stopping the Listener and Database on Windows
	Starting and Stopping the Listener and Database Using SQL*Plus

	Enabling Remote Client Connection

	Using Oracle Database
	Oracle Application Express
	Logging In To Oracle Application Express
	Unlocking the HR User
	Creating Database Objects
	Working with SQL Scripts
	Creating a PL/SQL Procedure
	Creating a Database User
	Monitoring Database Sessions
	Database Backup and Recovery
	Backing Up The Database
	Restoring the Database

	Oracle SQL*Plus
	Starting SQL*Plus
	Executing SQL and PL/SQL Statements in SQL*Plus
	Controlling Query Output in SQL*Plus
	Running Scripts in SQL*Plus
	Information On Tables in SQL*Plus
	Accessing the Demonstration Tables in SQL*Plus

	Oracle SQL Developer
	Creating a Database Connection
	Editing Data

	Creating a Table
	Executing a SQL Query
	Editing, Compiling and Running PL/SQL
	Running Reports
	Creating Reports

	Installing Apache HTTP Server
	Installing Apache HTTP Server on Linux
	Starting and Stopping Apache HTTP Server
	Configuring Apache HTTP Server on Linux

	Installing Apache HTTP Server on Windows
	Starting and Stopping Apache HTTP Server

	Installing PHP
	Installing PHP with OCI8 on Linux
	Installing OCI8 Using a Local Database
	Installing OCI8 Using Oracle Instant Client

	Upgrading PHP with PECL OCI8 on Linux
	Upgrading OCI8 as a Static Library on Linux
	Upgrading OCI8 on Linux Using the PECL Channel
	Upgrading OCI8 as a Shared Library on Linux

	Installing PHP With OCI8 on Windows
	Installing OCI8 Using a Local Database on Windows
	Installing OCI8 with Instant Client on Windows
	Upgrading OCI8 on Windows

	Installing OCI8 with Oracle Application Server on Linux
	Installing PHP With PDO
	Installing PDO on Linux
	Installing PDO on Windows

	Checking OCI8 and PDO_OCI Installation

	Installing Zend Core for Oracle
	Installing Zend Core for Oracle
	Installing Zend Core for Oracle on Linux
	Testing the Zend Core for Oracle Installation on Linux
	Installing Zend Core for Oracle on Windows
	Testing the Zend Core for Oracle Installation on Windows

	Configuring Zend Core for Oracle

	Connecting to Oracle Using OCI8
	Oracle Connection Types
	Standard Connections
	Multiple Unique Connections
	Persistent Connections

	Oracle Database Name Connection Identifiers
	Easy Connect String
	Database Connect Descriptor String
	Database Connect Name

	Common Connection Errors
	Setting Oracle Environment Variables for Apache
	Closing Oracle Connections
	Close Statement Resources Before Closing Connections
	Transactions and Connections
	Session State with Persistent Connections

	Optional Connection Parameters
	Connection Character Set
	Connection Session Mode
	Connection Privilege Level
	Operating System Authenticated Privileged Connections
	Remote Privileged Access
	External Authentication

	Changing the Database Password
	Changing Passwords On Demand
	Changing Expired Passwords

	Tuning Oracle Connections in PHP
	Use the Best Connection Function
	Pass the Character Set
	Do Not Set the Date Format Unnecessarily

	Managing Persistent Connections
	Maximum Number of Persistent Connections Allowed
	Timeout for Unused Persistent Connections
	Pinging for Closed Persistent Connections
	Apache Configuration Parameters
	Reducing Database Server Memory Used By Persistent Connections

	Oracle Net and PHP
	Connection Rate Limiting
	Setting Connection Timeouts
	Configuring Authentication Methods
	Detecting Dead PHP Apache Sessions
	Other Oracle Net Optimizations
	Tracing Oracle Net

	Connection Management in Scalable Systems

	Executing SQL Statements With OCI8
	SQL Statement Execution Steps
	Query Example
	Freeing Statements

	Oracle Datatypes

	Fetch Functions
	Fetching as a Numeric Array
	Fetching as an Associative Array
	Fetching as an Object
	Defining Output Variables
	Fetching and Working with Numbers
	Fetching and Working with Dates

	Insert, Update, Delete, Create and Drop
	Transactions
	Autonomous Transactions
	The Transactional Behavior of Connections

	PHP Error Handling
	Handling OCI8 Errors
	OCI8 Connection Errors
	OCI8 Parse Errors
	OCI8 Execution and Fetching Errors

	Tuning SQL Statements in PHP Applications
	Using Bind Variables
	Binding with LIKE and REGEXP_LIKE Clauses
	Binding Multiple Values in an IN Clause
	Using Bind Variables to Fetch Data
	Binding in an ORDER BY Clause
	Using ROWID Bind Variables

	Tuning the Prefetch Size
	Tuning the Statement Cache Size
	Using the Server and Client Query Result Caches

	Limiting Rows and Creating Paged Datasets
	Auto-Increment Columns
	Getting the Last Insert ID
	Exploring Oracle
	Case Insensitive Queries
	Analytic Functions in SQL

	Using PL/SQL With OCI8
	PL/SQL Overview
	Blocks, Procedures, Packages and Triggers
	Anonymous Blocks
	Stored or Standalone Procedures and Functions
	Packages
	Triggers

	Creating PL/SQL Stored Procedures in PHP
	End of Line Terminators in PL/SQL with Windows PHP

	Calling PL/SQL Code
	Calling PL/SQL Procedures
	Calling PL/SQL Functions
	Binding Parameters to Procedures and Functions

	Array Binding and PL/SQL Bulk Processing
	PL/SQL Success With Information Warnings
	Using REF CURSORS for Result Sets
	Closing Cursors
	Converting from REF CURSOR to PIPELINED Results

	Oracle Collections in PHP
	Using PL/SQL and SQL Object Types in PHP
	Using OCI8 Collection Functions
	Using a REF CURSOR
	Binding an Array
	Using a PIPELINED Function

	Getting Output with DBMS_OUTPUT
	PL/SQL Function Result Cache
	Using Oracle Locator for Spatial Mapping
	Inserting Locator Data
	Queries Returning Scalar Values
	Selecting Vertices Using SDO_UTIL.GETVERTICES
	Using a Custom Function

	Scheduling Background or Long Running Operations
	Reusing Procedures Written for MOD_PLSQL

	Using Large Objects in OCI8
	Working with LOBs
	Inserting and Updating LOBs
	Fetching LOBs
	Temporary LOBs
	LOBs and PL/SQL procedures
	Other LOB Methods

	Working with BFILEs

	Using XML with Oracle and PHP
	Fetching Relational Rows as XML
	Fetching Rows as Fully Formed XML
	Using the SimpleXML Extension in PHP
	Fetching XMLType Columns
	Inserting into XMLType Columns
	Fetching an XMLType from a PL/SQL Function
	XQuery XML Query Language
	Accessing Data over HTTP with XML DB

	PHP Scalability and High Availability
	Database Resident Connection Pooling
	How DRCP Works
	PHP OCI8 Connections and DRCP
	When to use DRCP
	Sharing the Server Pool

	Using DRCP in PHP
	Configuring and Enabling the Pool
	Configuring PHP for DRCP
	Application Deployment for DRCP
	Closing Connections
	LOGON and LOGOFF Triggers with DRCP
	Changing Passwords with DRCP Connections

	Monitoring DRCP
	V$PROCESS and V$SESSION Views
	DBA_CPOOL_INFO View
	V$CPOOL_STATS View
	V$CPOOL_CC_STATS View

	High Availability with FAN and RAC
	Configuring FAN Events in the Database
	Configuring PHP for FAN
	Application Deployment for FAN
	RAC Connection Load Balancing with PHP

	Globalization
	Establishing the Environment Between Oracle and PHP
	Manipulating Strings
	Determining the Locale of the User
	Developing Locale Awareness

	Encoding HTML Pages
	Specifying the Page Encoding for HTML Pages
	Specifying the Encoding in the HTTP Header
	Specifying the Encoding in the HTML Page Header
	Specifying the Page Encoding in PHP

	Organizing the Content of HTML Pages for Translation
	Strings in PHP
	Static Files
	Data from the Database

	Presenting Data Using Conventions Expected by the User
	Oracle Number Formats
	Oracle Date Formats
	Oracle Linguistic Sorts
	Oracle Error Messages

	Testing PHP and the OCI8 Extension
	Running OCI8 Tests
	Running a Single Test
	Tests that Fail

	Creating OCI8 Tests
	OCI8 Test Helper Scripts

	Configuring the Database For Testing

	Tracing OCI8 Internals
	Enabling OCI8 Debugging output

	OCI8 php.ini Parameters
	OCI8 Function Names in PHP 4 and PHP 5
	The Obsolete Oracle Extension
	Oracle and OCI8 Comparison

	Resources
	General Information and Forums
	Oracle Documentation
	Selected PHP and Oracle Books
	Software and Source Code
	PHP Links

	Glossary

